\qquad
Determine the domain and range of the graphs. Write answers in interval notation.

1. $\mathrm{D}:[-7,8]$
$R:[-4,8]$
2. $D:[-5,4]$
$R:[-4,9]$
3. Graph:

4. Graph:

Determine if there is a point of discontinuity and if it is removable or nonremovable or jump.
3. discont-jump
3. Is this graph continuous at $x=-2$?

If not, what type of discontinuity does it have?
4. $\operatorname{con}^{\prime}$

4. Is the graph continuous at $x=6$

If not, what type of discontinuity does it have?

State the following, write the max/min in ordered pair form, write the increasing/decreasing in interval notation.
$(1,37)$
$(-2,-152)$
6. Local minimum
(∞, ∞)
7. Absolute maximum
$(-2,-152)$
$(-2,1) \cup(3, \infty)$
8. Absolute minimum
$(-3-2) \cup(1,3)$
10. Interval(s) of decreasing

15. $(f / h)(x)$ also state the domain for the new function.

$$
\frac{x^{2}-3 x+4}{2 x+5 * 0}
$$

3 16. Find $(g \circ f)(-2) \begin{array}{rl}x & x \\ f(x) & -\frac{5}{2} \\ x^{2}-1 \\ -1\end{array} g(x)=2 x-3$

$$
\begin{aligned}
& f(-2)=-2^{2}-1=30 \\
& g(3)=2(3)-3=3
\end{aligned}
$$

$6 x^{2}-19$

$$
\begin{aligned}
& 2\left(x^{2}+1\right)-3 \\
& 2\left(-2^{2}-1\right)-3=3
\end{aligned}
$$

$$
\text { 17. Find } f(g(x)) \text { given } f(x)=3 x+2, g(x)=2 x^{2}-7 \text {. }
$$

$$
3\left(2 x^{2}-7\right)+2
$$

$$
f^{-1}(x)=\frac{x-5}{2} \quad 6 x^{2}-21+2
$$

$$
\begin{aligned}
& f(x)=2 x+5 \\
& y=2 x+5 \\
& x=2 y+5 .
\end{aligned}
$$

\qquad 19. Determine whether the function is one-to-one.

Show work below
20. Show that f and g are inverse by showing that

$$
f(g(x))=x \text { and } g(f(x))=x
$$

$$
\begin{array}{ll}
f(x)=\frac{x+3}{4} \text { and } g(x)=4 x-3 \\
f(g(x))=\frac{(4 x-3)+3}{4}=\frac{4 x}{4}=x & g(f(x))=4\left(\frac{x+3}{4}\right)-3 \\
& =x+3 \times 5=x
\end{array}
$$

$$
\begin{aligned}
& 4 x^{2}+2 x-3^{11 .(f+g)(x)}\left(x^{2}-3 x+4\right)+\left(3 x^{2}+5 x-7\right) \\
& -2 x^{2}-8 x+11 \\
& \text { 12. }(f-g)(x)\left(x^{2}-3 x+4\right)+\left(-3 x^{2} \mp 5 x+7\right) \\
& -x^{2}+5 x+1 \text { 13. }(h-f)(x) \quad(2 x+5)+\left(-x^{2}+3 x+4\right) \\
& 2 x^{3}-x^{2}-7 x+20 \text { 14. (th) (x) }\left(x^{2}-3 x+4\right)(2 x+5)=2 x^{3}+5 x^{2}-6 x^{2}-15 x+8 x+20 \\
& \frac{x^{2}-3 x+4}{2 x+5} \quad D=\left(-\infty,-\frac{5}{2}\right) \cup\left(-\frac{5}{2}, \infty\right)
\end{aligned}
$$

