

CONCEPTS EXPLAINED

This reference is a companion to the Tutorials for the purpose of providing deeper

explanations of concepts related to game designing and building. This reference

will be updated with additional concepts as needed.

CONCEPTS (IN ORDER)
 Conditional Statements and Logic Systems

 Control Actions

 Blocks and Sub-procedures

 Coordinate Systems & Origins (Game Maker)

 Naming Conventions

 Probability and Randomness

 Relative

 Tools and Resources in Game Maker: The Menu Bar

o Menu Bar

o Toolbar

o Global User Interface

 Animation in Game Maker

Conditional Statements and Logic Systems
In the opening unit of this course, you learned a core concept called a hypothesis (in Step 3 of the design process). In

game design and programming, you always must always consider the events that you want and the actions you expect

as a result. Hypothesis statements in computer programming, especially game design, can be written as conditional

statements. A conditional statement is written so that an event (or events) can be connected to the actions that they

produce. The event is what causes the action to occur. In logic, this is called cause and effect. An event may be what

the player does on the game interface, such as the pressing of a key on the keyboard, such as the right arrow key. That

event then could cause the effect of an object moving to the right, hence this would be a cause and effect. A conditional

statement for this might be written as an IF/THEN statement such as: IF the right arrow key is pressed, THEN the

object will move to the right in the room.

Once this object is being moved under the control of the player, other things could happen, which would connect this

event and action to other events and actions in a logic system. An action may require two separate conditions to exist,

in other words, two different events would both have to occur in order to see the action. This more complex conditional

statement could be written as an IF/AND/THEN statement such as: IF a right arrow key moves the object AND it

collides with a wall, THEN it is destroyed.

A statement may be written to describe an action based on two event options, requiring one or the other of the two

events to occur so that action is created. This could be written as an IF/OR/THEN statement such as: IF the object

collides with a wall OR it stays in one place too long, THEN it will be destroyed.

An event or events can also cause the effect of multiple actions to happen. For example, an event may be created to

check, or “test”, the game score and cause either one of two actions as an effect. Such a statement may be written in an

IF/THEN/ELSE statement as: IF the score is greater than 100, THEN the words “you win” are displayed, ELSE the

words “try again” are displayed.

Logic systems can be assembled in lots of ways to make a game challenging. Using hypothesis statements written in this

manner will help you plan out the events and actions that you want in your game, especially when you have numerous

events and actions that effect each other. Words like IF, THEN, OR, AND, and ELSE could be used in many different ways

to help you think through the logic for your game programming. Here are other examples:

IF the score is equal to 100 OR greater than 100, THEN the words “you win” are displayed, ELSE the word “try

again” are displayed. The property window in the graphic below illustrates an event with actions that can be

used to test this conditional statement (hypothesis). Parts of the conditional actions are programmed as blocks.

IF the score is greater than 100 AND the gameplay is in the second level, words “you win” are displayed, ELSE

the word “try again” are displayed.

By first writing conditional statements and treating

them as hypothesis statements, logic systems using

events and actions will become easier to program.

After programming game properties based on your

hypothesis, you can test the properties by running, or

playing, the game to see if the hypothesis is valid, or

“true”. Testing, or checking, for a condition is done

by adding a control action, usually shaped like a

hexagon. Deeper explanations of various

control actions can be found in in that section of

Concepts Explained. The control actions in the blocks

(see graphic to the right) set actions by checking on

the condition “if the score is”. You can review the

concept of creating a hypothesis, testing validity, and

other Core Concepts of Technology in the first course

unit titled Avatar Design Challenge.

Control Actions
Control actions are included in programming properties when it is necessary to check to see if specific

conditions are present so that other actions can occur. The games must be programmed so that events cause

actions, or at a more complex level, events and actions cause other events and action (a concept explained

further in Conditional Statement and Logic Systems). Control actions will “test” or “check for” the existence of

conditions. Think of it this way: When active, the control action “asks questions” within the programming,

and if the answer “yes” or “true”, then other actions will occur. Read the conditional statement below,

followed by an explanation of how a control action will check, or “ask”, for the presence of the condition.

IF the number of cherries is zero, THEN go to the next level (room).

To get the action of going to the “next room”, your program needs to be asking this question: “Are there zero

balls?” You would need a control action called “Test Instance Count” to accomplish this. This action “tests”

or “checks for” the number of ball instances in the current room. When there are no balls left (the value of

zero), the action verifies that as “yes” or “true”, and that condition then becomes the event that causes the

action of taking the gameplay to the next room.

The graphic on the right illustrates the

programming that could be created to

perform the actions in the conditional

statements example. The first action in

the form is the Test Instance Count.

When the number of object_ball instances in the room is zero, the

Condition is “asked for” is validated as

“true”, and the then the Go to next room

action is performed.

There are many control actions, most of

which are found in the actions Control tab

of the properties window. They have

octagon shaped icons. You can check for

scores, collisions, objects, locations of

objects, and chances for random actions,

just to list a few.

Blocks and Sub-procedures
Typically, when a condition checks as “true”, the only resulting action will be the next one in list, appearing

just below the control action in the properties window (see Control Actions in Concepts Explained). If you

want more actions to be performed as a result of the one condition checked as “true”, then all of those

actions can be placed in a block. In the Control tab of the properties form, there are markers that indicate the

start and end of the block, with the series of actions that you want in between the markers.

A condition can also result in options of actions, each option in a block of actions. These blocks need to be

separated by an Else action. If a control action tests as “true”, then the first of the two blocks will active. If it

tests as “false”, then second block following the Else action will activate. In computer programming, these

blocks are referred to as sub-procedures.

The graphic on the right illustrates properties using

blocks as sub-procedures, starting with a control action

and including an Else action in a Game End event. You

may use programming like this at the end of a game.

It also includes an Exit action that ends the entire

process once it has executed. The following

conditional statement describes a scenario for the

properties in the graphic:

IF the number of ball object instances is zero,

THEN display “you win” with happy music

and show the top scores THEN exit. ELSE

display “try again” with sad music, go back

to the first level (room) and set the score to

zero THEN exit.

Even though the Exit action is the last one in the list, it

will happen after either one of the block options takes place.

Sub-procedure blocks may also include a Repeat action that

will make the actions in the block repeat up to a specified

number of times. The Call Parent Event is also useful to

include as an action. It will run a sub-procedure, but the

actions will be inherited from a different event. Whatever

the actions are in the “parent” event, they will be used as a

sub-procedure by the event you are programming, making

the new event the “child”. Look for examples of this

programming in game build tutorials.

Coordinate Systems & Origins (Game Maker)
A coordinate system is a reference system used to plot the locations of game features, such as where object

instances are located in a room. It can also place the location of object instances as they are related to, or

relative to, other objects. In either case, you are using units that measure the distance of a point from an

origin along a horizontal axis and a vertical axis. The locations from left/right (horizontal) are identified as x,

while the up/down (vertical) locations are labeled as y. The origin is assigned a value of x=0 and y=0 (0, 0)

which is the point at the upper left corner of the room. In Game Maker, locations in rooms are determined by

the distance of the points from an origin. If you are locating an instance of an object to the right of the origin,

the values of x increase as it moves further to the right of the origin. The y value increases as the object

moves down. NOTE: This is the opposite of what you are taught in math for locating points on a y axis.

Typically, y values would increase moving up from the origin. DO NOT APPLY THE “GAMEMAKER RULE” IN

YOUR MATH CLASS!

The settings of the room grid lines are at a default value of 32 for each unit (x and y) although that can be

adjusted by changing the Snap X and Snap Y settings (circled red in graphic below). Hence, you cut the

distance between the lines in half by changing the values to 16. This doubles the number of gridlines and

multiplies the number of squares by four. The instance of the “girl” object in the room below is at x=64, y=64

(64, 64), based on her object origin (yellow circle) as measured from the room origin (purple arrow). No

matter where she moves in the room, the “ball” object must appear at her hand (blue “x”), so the instance of

the ball must always will show at x=128, y=16 (128, 16), but relative to the location of her object origin, not

the room origin. The properties for the girl that create the instance of the ball must be set to relative so that

the ball always finds her hand.

Naming Conventions
When naming and saving files, regardless of the software application, start with your initials (or yours and a

partner’s) followed by an underscore (_). After the underscore, add a brief descriptive name based on the

product you are creating. It may be a game file, a written document, sound, graphic, or even a spreadsheet

for organizing information. Never use spaces and other punctuation in the file name. An underscore (_) can

substitute for a space.

EXAMPLES: fk_clutches, fkrl_conceptdoc, rlfk_music, rl_soundcrash, fk_ballred, fk_alphadata

File types (formats) and file extensions

A file is always created new, or saved, so that the information (bits and bytes of data) in the file is organized in

way that is recognizable by computer software and applications. This usually occurs automatically when the

file is created and saved. The file is also assigned a three digit file extension that identifies it as a specific file

type, or format. For example, if you are doing a game build in Gamemaker8.1, it will be saved as a Game

Maker file with a file extension .gm81. So a properly named game build file with a file extension might be

named fk_clutches.gm81.

ADDITIONAL EXAMPLES:

 A Scratch game build saved as a Scratch file with an extension of .sb or .sb2 fk_clutches.sb

 A Word document saved as a .docx fkrl_conceptdoc.docx

 A sound asset saved as an .mp3 or .wav file rlfk_music.mp3 or rl_soundcrash.wav

 A graphic file saved as a .jpg, .bmp, .png, or .gif fk_ballred.png

 An Excel spreadsheet saved as a .xlsx fk_alphadata.xlsx

An open folder with various file types, or formats, with proper naming conventions and extensions.

NOTE: If your file document window does not show the file details that you see in the above graphic, your

teacher will show you how to set the window defaults using the Organize and More Options tabs (circled red).

Probability and Randomness
You can control the possibility that actions will happen in a game by designing probability into the actions.

The Test Chance action, is a “chance to perform” action that creates a random number generator in your

game. This is a virtual die that will generate a random number, just like a dice roll in any board game. You can

decide how to use this concept to create actions that will occur based on a number of chances that you can

set in the property. Game Maker programs will roll the die 30 times per second. Setting the number of

chances to 1 in 30 creates a probability that for each of the thirty rolls occurring in a second, your chances of

performing an action are 1 in 30. Based on probability, you can expect your action to occur at least once per

second, although it is possible that it can happen more than once per second. If you change the chance from

1 in 30 to 1 in 15, you can expect the number of actions occurring in a second to double based on probability,

although it also could be more. The die is still rolling 30 times per second, but you should get an action once

every fifteen rolls, or 2 per second. If you change the chances from 1 in 30 to 1 in 60, you may not see an

action every second. In this case, probability says that you can expect an action to occur at least once in a two

second period, since it will take two seconds to generate sixty rolls at rate of 30 rolls per second. Hence, you

increase the chances by lowering the second number and decrease the chances by raising the second

number. Managing probability in this manner can give your actions an element of randomness. When actions

are random, they can be without the player knowing when or where they will occur.

The word random can also be used as a function property entered along with a value to create random

speeds, locations of instances, and directions for movement. It can be written into property fields, or used as

a command in scripts. You would enter the command random followed by a numerical value in parenthesis. If

random(10) is entered in to a property field, it is creating a die with ten sides. If this were a speed property,

than the speed in that action will be occur randomly between at a speed between 1 and 10. If it rolls a 2, the

speed of that object will be slower than it would be if it rolls a 9. The speed will never be faster than 10. This

same concept can be used to set directions, paths, and other actions.

There is also a create instance action that can be set to create an instances of random objects. They can

appear at specific location coordinates, or at random locations. This is a great way to make objects spawn.

This means that the object appears in the room randomly, or “made alive”, often without player control.

A TEST CHANCE ACTION SET FOR A

PROBABILITY OF 1 IN 30 CHANCES

A SPACEBAR KEYPRESS EVENT WITH MOVE FREE

ACTION. THE OBJECT WILL MOVE IN A RANDOM

DIRECTION FROM

1 TO 360O AND AT A RANDOM SPEED OF 1 TO 10.

Relative
When relative is selected as an option in an action property, it sets that action to occur as it relates to the

behavior of the object before the start of that action. For example, an object is in motion, based on properties

moving it horizontally to the right at a speed of 8, meaning 8 pixels per step. You add a <right> key press

event with a fixed move action set for right as a direction. In that action, you set the speed for 4 and select

relative and choose self. The self option will compare the new action speed to its own speed that is already in

action. With the object already moving to the right at a speed of 8, each time you press the right key, you add

4 to the speed that it already has. On the first key press you bump the speed to 12, because that is the speed

relative, or as related, to 8. Your next key press will add another 4, making the speed 16. So the speed

increases by 4, as relative to the existing speed as long as relative is checked. A value of -4 would reduce the

speed by four, but it would continue moving in the same direction. Leaving relative unchecked would change

the speed to the value entered in the property.

Relative is also used to locate the creation of instances for an object. An event that creates an instance of

another object can either be assigned grid coordinates, or object coordinates for the instance location. If you

are creating an instance and check relative, the instance will appear at a location based on the x, y coordinates

entered as related to, or relative to, an object origin. It can either be relative to its own object origin by

choosing self, or the origin of other objects. Leaving relative unchecked will cause the instance location to

create itself based on grid coordinates. As an example, a create instance action can be added to a tank object,

creating a missile shooting from the tank’s missile launcher. The tank’s launcher is located at x=20, y=7 (20, 7)

from the tank’s origin (0, 0). To get the missile to fire from the launcher, a key press event with a create

instance action can be added to the tank object, with the (20, 7) coordinates entered, the self option selected,

and the relative box checked. This will happen no matter where the tank object is located in the room. If

relative is not checked, the instance of the missile will appear at grid coordinates (20, 7). The relative concept

and property is used in a variety of other speed, directional, and instance generating properties and can be

used in code writing.

EXAMPLES OF “RELATIVE” BEING APPLIED TO SPEED

AND LOCATION PROPERTIES.

Tools and Resources in Game Maker: The Menu Bar

File Menu
The Menu bar is a horizontal bar located at the top of the screen below the title bar, containing drop-down
menus accessing a variety of tools and resources needed for the Game Maker application.

New - Choose this command to start creating a new game. If the current game was changed you are asked
whether you want to save it. There is also a toolbar button for this.

Open - Opens a game file. There is also a toolbar button for this command. You can also open a game by
dragging the file into the Game Maker window.

Recent Files - Use this submenu to reopen game files you recently opened.

Save - Saves the game design file under its current name. If no name was specified before, you are asked for a
new name. You can only use this command when the file was changed. Again, there is a toolbar button for
this. See Naming Conventions for information on how to name files when saving.

Save As - Saves the game design file under a different name. You are asked for a new name. Again, refer to
Naming Conventions for naming files.

Create Executable - Once your game is ready you will probably want to give it to others to play. Using this
command you can create a stand- alone version of your game. This is simply an executable that you can give
to other people to run.

Advanced Mode - When clicking on this command Game Maker will switch between simple and advanced
mode. In advanced mode additional commands and resources are available.

Exit - Press this to exit Game Maker. If you mad edits to the current game you will be asked whether you want
to save it.
The “G” – This is the icon to the left of the File menu. Tools in this menu can be used to close, minimize, or
restore the Game Maker website that may open automatically in the main form when Game Maker is
launched.

Edit Menu
The contents of this menu may vary based on the resource you want to edit (sprite, object, sound, etc.). Note

that all these commands can also be given in a different way. Right- click on a resource or resource group, and
the appropriate pop-up menu will appear.

Insert resource - Inserts a new instance of the currently selected type of resource before the current one. A
form will open in which you can change the properties of the resource.

Duplicate - Makes a copy of the current resource and adds it. A form is opened in which you can change the
resource.

Delete - Deletes the currently selected resource (or group of resources). You will see a prompt reminding you
that deleting resources cannot be undone. Be sure this is what you want before deleting.

Rename - Gives the resource a new name. This can also be done in the property form for the resource. Also,
you can select the resource in the resource explorer and rename it.

Properties - Use this command to bring up the form to edit the properties. Note that all the property forms
appear within the main form. You can edit many of them at the same time. You can also edit the properties by
double clicking on the resource.

Resources Menu
In this menu, you can create new resources of each of the different types. These include sprites, sounds,
objects, rooms, backgrounds, scripts and much more. Note that for each of them there is also a button on the
toolbar and a keyboard shortcut. Also you can change the game information and the global game settings.

Run Menu
This menu is used to run the game. There are two ways to run a game. They will behave as they would as
executable files created with the File menu command.

Run normally - Runs the game as it would normally run. The game is run in the most efficient way and will
look and act as in an executable game.

Run in Debug mode - Runs the game in debug mode. In this mode you can check certain aspects of the game
and you can pause and step through it. This is useful when something goes wrong but is a bit advanced.

Window Menu
In this menu you find typical commands to manage the different property windows in the main form.
Cascade -Cascade all the windows such that each of them is partially visible.

Arrange Icons - Arrange all the icons property windows. This is useful when resizing the main form.

Close All - Close all the property windows, asking the user whether or not to save the changes made.

Help Menu
In this menu you find commands that open resources that will help you better understand Game Maker, and
connect you to online resources that provide help and software upgrades. In this course, you will build “Your
First Game”, which is a tutorial accessible under the Help menu.

Tools and Resources in Game Maker: The Toolbar

The toolbar is a horizontal bar located below the menu bar containing graphic buttons or icons which open

frequently used tools and resources in the Game Maker application. Commonly used tools and resources

available from the Menu bar can be accessed with these shortcut buttons. These include create sprite, create

object, create sound, and more.

Global User Interface in Game Maker
The Game Maker software engine has
many tools for the creation of computer
games. Your favorite computer games
probably have many features that make
it fun, including objects that you can
control, various levels of challenge,
awesome visual and sound effects, and
much more. Game engines like Game
Maker have many of the game building
tools needed to build such fully inter-
active games. Game Maker tools and
resources are accessed and used in five
different areas of the Global User
Interface as labeled on the right.

MENU BAR

RESOURCE EXPLORER

TOOLBAR

MAIN FORM WINDOW
DISPLAYS WINDOWS FOR SPRITE, OBJECT, ROOM

PROPERTIES, SCRPTS AND OTHER GAME BUILDING

TOOLS

TUTORIAL WINDOW

Animation in Game Maker
There are numerous ways that animation can be incorporated into your games. One is to use or create assets

that have animated properties built into the asset itself. When sprites and objects are made from these

assets, the object instances will animate as they show in a room.

Animated Strips

For example, you can create a PNG file (Portable Network Graphic) with an animated strip that has many sub-

images, or frames, with your object design in a different position for each frame. This is similar to making

drawings of stick figures on small pieces of paper and flipping through them to create movement.

Game Maker has the capability of seeing the different images and flipping through them automatically to

create the effect of natural movements like walking, jumping, flapping of wings, etc. When you see a PNG

strip in an asset folder, all of the small sub-images will be visible in the icon. The sub-images can be viewed

and edited in Game Maker’s sprite editor, with numbering starting at image 0, then image 2, 3, and so on

based on the total number of sub-images. See PNG graphic on next page.

Graphic Interchange Format (GIF)

If you use or build an asset that is a GIF file type (Graphics Interchange Format), the animation itself is coded

within the asset, unlike PNG which is a single graphic with images in a strip. Sub-images are compressed into

the file (more like a video), along with all of the control data needed to open it and play the animation. A GIF

icon will only show one image instead of a strip. However, like PNG images, the sub-images can be viewed

and edited in Game Maker’s sprite editor. See GIF graphic on next page.

Events and Actions for Animation

Animations of both of GIF and PNG file types can be made into sprites and objects and then given properties

for events and actions. The example below uses a PNG strip to make a sprite and object, with Change Sprite

actions to change the object from a static (unanimated) appearance to an animation. The first step is to add a

Create event with a Change Sprite action to create the unanimated, or static (standing still), appearance of

your object. In the Change Sprite properties, you select the sprite that you want and then the sub-image for

the static object. Enter the sub-image number for the static position that you want. If you have eight sub-

images, they are typically numbered 0 through 7 when you inspect them in the sprite editor. Typically, you

want the static image to be the first image in the strip, which would be image 0, although you can choose

another sub-image number. When the instance appears in the room, it will only show the entered sub-image

number and the rest will be skipped. You won’t want any movement so the speed should be set to 0.

Next, you would have to add a Key Press (or Keyboard) event with another Change Sprite action. You would

then select the same sprite, then enter -1 for the sub-image, which will cause the action to animate through all

sub-images in the set. The speed should be set to a value greater than 0, although setting it to 1 will allow the

animation to capture all of the sub-images. If the speed is greater than 1, sub-images will be skipped, although

the object will animate faster. If it the speed is smaller than 1, sub-images will be shown multiple times

slowing down the movement. Never use a negative speed. You can add a Move Fixed or Move Free action to

your key events so that the object will move left, right, or other directions while animating. You may even

want to change the sprite depending on the direction in which it moves, in other words facing left, right, up,

down, jumping up, etc. based on the assigned arrow key. This can be achieved by making different sprites for

each of the (four) directions. This same animation technique can be used with other events such as collisions,

step, intersect boundaries, etc. See properties graphic on next page.

Naming conventions for animated strips should include the total number of sub-images. This sample has eight.

 Eg. explorer_left_strip8.png Animation in Game Maker continued on next page

Animation in Game Maker (continued)

UPPER RIGHT IMAGE SHOWS PNG STRIP IN GAME

MAKER SPRITE EDITOR. LOWER RIGHT IS A GIF.

LOWER LEFT SHOWS HOW STRIP PNG ICON

APPEARS IN FOLDER AS COMPARED TO A SINGLE

IMAGE FOR THE GIFF

PROPERTY FORMS FOR ANIMATED STRIP AS

DESCRIBED IN CONCEPTS EXPLAINED

