
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE TECHNOLOGY AND CRAFT OF COMPUTER GAME DESIGN 
An introductory course in computer game design 
 

TUTORIALS, GRAPHICS, AND COURSEWARE BY: 

MR. FRANCIS KNOBLAUCH 
TECHNOLOGY EDUCATION TEACHER 

CONWAY MIDDLE SCHOOL 

ORLANDO, FLORIDA 

 

 GAME BUILDING TUTORIAL FOR THE GAME 

Lazarus 
*BASED ON THE GAME CREATED BY: 

JACOB HABGOOD & MARK OVERMARS 
*INCLUSIVE OF GAMEPLAY, GRAPHICAL/SOUND ASSETS, AND PROGRAMMING CONCEPTS 
 

GRAPHIC ASSET ILLUSTRATIONS BY: 

KEV CROSSLEY 
 

TUTORIAL AND COURSEWARE DOCUMENTS INCLUDE: 
Lazarus:  Stages 1 & 2 
Lazarus:  Stages 3 & 4 
Lazarus:  Stages 5, 6 & 7 

 

STUDENT RECORD DOCUMENTS INCLUDE: 
Lazarus:  Galactic Mail:  Stages 1 & 2 
Lazarus:  Galactic Mail:  Stages 3 & 4 
Lazarus:  Galactic Mail:  Stages 5, 6, & 7 

 

COMPANION MATERIALS INCLUDE: 
 Glossary 
 Concepts Explained 
 

REQUIRED SOFTWARE OR GAME ENGINE: 
Game Maker 8.1 or Game Maker Studio 

 

REQUIRED DIGITAL ASSETS:      
*Lazarus Assets 

 

 

 

ALL TUTORIALS AND REFERENCE RESOURCES FOR THIS COURSE ARE THE PROPERTY OF THE AUTHOR.   

USE OF THIS MATERIAL WITHOUT PERMISSION FROM THE AUTHOR IS PROHIBITED.    

THIS COURSE IN IS AN ALPHA STAGE.  

TUTORIALS AND COURSEWARE ARE PENDING COPYRIGHT.   



Lazarus:  Stages 1 & 2 
The basic vocabulary and concept of animation using image and sub-image assets was introduced in Galactic 

Mail.   How do we apply these concepts in a creative sense to add value to an animation? 

"When people laugh at Mickey Mouse, it's because he's so human; and that is the secret of his 

popularity." 

  -Walt Disney 

This observation by Walt Disney expresses a core concept of animation that is shared in a variety of 

entertainment industries, including film, television, and video games.   Does a mouse really sing and dance?  

Do bugs have big eyes and toothy smiles?   If you believed in ghosts, would you expect them to be friendly and 

childlike?   Animation can also make objects that exist in the real world take on life, like dancing cups and 

saucers.   Events and actions that could never happen in the real world can become believable.  Imagine a 

coyote running off of the edge of cliff, pausing to hover in mid-air long enough to show expression of fear.  

Before falling and waving goodbye, before stretching and falling hundreds of feet to his demise.   

Walt Disney called this artistic theory the “plausible impossible”.   He referred to the appearance of reality 

within situations and characters that would never exist in real life.  The viewer becomes comfortable watching 

characters and situations that would never exist naturally.  In other words, unbelievable things seem 

believable, and impossible things seem possible.  The word plausibility applies here, as to be plausible means 

that things have an appearance of being believable, or true.   When an animation is plausible, people will be 

comfortable with it, understand it, and connect to it, even though it is not possible in a real sense.  Hence, the 

importance of Disney’s concept of the “plausible impossible”. 

In Lazarus, you will be deepening your understanding of animation by creating properties for a character 

(named Lazarus) that give him lifelike qualities in both his movement and expression.  In creating your 

animated events and actions, Lazarus the grape will behave in a way that makes sense. He will be interacting 

with realities of the physical world as well, as he will have to avoid the hazards of falling boxes in the 

warehouse where he dwells.  He will need to look, or “check” for empty spaces to dodge into, where he will be 

safe from catastrophic events that will crush him.  Even though he is a grape, his movements will appear to be 

natural in the way he leans and jumps. He will express joy in being safe, and fear when it is obvious that there 

is no escaping the falling boxes in the warehouse.  The boxes themselves will take on the physical properties of 

real objects, as they fall due to gravity.  Lighter boxes will stack onto boxes that are the same weight or 

heavier, and of course, a heavy box will crush lighter box.  Hence, everything that happens in the gameplay of 

Lazarus will make sense, even though grapes don’t really have eyes, facial expressions, and natural movement.  

Typically, boxes do not fall from the top of a warehouse.   The blend of real physical properties, familiar facial 

expression, and movement all come together to make the gameplay and animation plausible. 

As you work through STAGES 1 & 2, you can read the concepts (gold box) to learn about how plausibility is 

achieved through techniques like squash and stretch, anticipation, staging, and exaggeration. In STAGES 1 & 

2, properties in this game build will include the use of new conditional actions including check collision and 

check empty, and the continued use of sub-procedures in blocks.   

Complete the definitions for the vocabulary on the tutorial guide 

BE SURE TO PAUSE TO COMPLETE HYPOTHESIS AND EVALUATIONS WHEN PROMPTED. 

()  DO NOT USE THE TEST BUTTON IN THIS ACTIVITY UNTIL YOU ARE PROMPTED. 
 

THERE ARE NO SAVE PROMPTS IN THIS TUTORIAL, SO SAVE REGULARLY. 
START HERE BEFORE CONTINUING TO NEXT PAGE:  
Set up Game Maker in advanced mode. Save and name your file initials_lazarus. 



STAGE 1A: 
Creating the sprite resources with specific origins 

1- Create a new sprite called spr_laz_stand using Lazarus_stand.gif from the Lazarus Assets folder on 
your computer desktop.   Click the OK button to close the form. 

2- Create another sprite called spr_laz_right using Lazarus_right.gif.  Under origin, set the Y value to 40 
(so it shows X as 0 and Y as 40). 

3- Create a spr_laz_jump_right with the Lazarus_jump_right.gif.  You also leave X value of 0 and set a Y 
value of 40 just as you did with the last sprite. 

4- Create a spr_laz_left sprite using Lazarus_left.gif.  On this sprite, set both the X and Y values to 40 (so 
it shows X as 40 and Y as 40) then close the form by clicking OK.  

5- Create a spr_laz_jump_left sprite in exactly the same way using Lazarus_jump_left.gif .  Again on this 
sprite, set both the X and Y values to 40 (so it shows X as 40 and Y as 40) then close the form by 
clicking OK. 

6- Create two more sprites called spr_laz_afraid and spr_laz_squished using Lazarus_afraid.gif and 
Lazarus_squished.gif.  These sprites are  
the same size as the standing sprite  

(40 x 40 pixels) so the origin can be left  
at 0 for X and 0 for Y. 
 

 

 

 

 

Creating object resources 
1- Create a new object called obj_laz_stand.  Assign it spr_laz_stand, then click OK. 
2- Create a new object called obj_laz_right and give it the sprite named spr_laz_right.  Don’t close the 

form because you are about to add events and actions. 
3- Click Add Event and select Other, then select Animation End event. This is the event that will stop the 

animation when it reaches the last sub-image.   
4- Drag and drop a Jump to Position action in this event from the move tab. 
5- In the Jump to positon window, set X to 40 and Y to 0, and make sure that the Relative option is 

enabled. 
6- Add a Change Instance action (main1 tab) below this and select obj_laz_stand as the object to change 

back into. Click OK to close the object properties form. 
 
 
 
 
 
 
 
 
 
 
 
 

spr_laz_right 

spr_laz_jump_right 

 

spr_laz_stand 

spr_laz_afraid 

spr_laz_squished 

 

spr_laz_left 

spr_laz_jump_left 

 



NOTE: In your first Hypothesis, be ready to anticipate behavior based on these X and Y settings for all of these 

Lazarus objects (hint: the left and right moves and jumps occur with boxes that are all 40 x 40 pixels.  You will 
need to explain what Lazarus will look like when he is moving, and what he will look like at the end of the 
movement. 

7- Create another object called obj_laz_left and assign it spr_laz_left.  Again, leave the form open 
because you about to add some events with action. 

8- Repeat the events and actions as before (steps 4–6), but this time set X to -40 for the Jump to Position 
action in obj_laz_left. 
 
 
 
 

9- Create another object called obj_laz_jump_right and assign it spr_laz_jump_right.   Repeat the steps 4 
through 6 process again, but now setting the Jump to Position coordinates to X to 40 and Y to -40 for 
obj_laz_jump_right. 
 
 
 
 

10-  Create one more Lazarus with obj_laz_jump_left and assign it spr_laz_jump_left. Do steps 4 through 7   
again, this time setting X to -40 and Y to -40. 

 
 
 
 

 
 

Creating the squished Lazarus object resource 
1- Create an object called obj_laz_squished and it spr_laz_squished. 
2- Click Add Event and choose Other, then Animation End event from the list. Drag and drop the Display 

Message action found in the main2 tab. 
3- In the message properties, you can type something like “YOU’RE HISTORY!#Better luck next time” into 

the message properties. Don’t use the quotation marks. You should type the # symbol in the middle of 
the message so it starts a new line from word.  Try to come up with something fun.  Another text might 
be “BUMMER! YOU’RE SQUISHED# YOU SHOULD TRY AGAIN!”  Just keep it positive. 

4- Drag in the Restart Room action from main1 after the message action and press OK to close the object 
properties form.  

 
 
 
 
 
 
 
 
 
 
 
 
 

CONDITIONAL STATEMENTS  

FOR LAZARUS OBJECTS: 
LAZARUS MOVING RIGHT: IF the animation ends 

at (40, 0), THEN change into Lazarus standing. 

LAZARUS MOVING LEFT: IF the animation ends 

at (-40, 0), THEN change into Lazarus standing. 

LAZARUS JUMPING RIGHT: IF the animation 

ends at (40, -40), THEN change into Lazarus 

standing. 

WRITE MORE CONDITIONAL STATEMENTS 

IN NEXT TUTORIAL GUIDE STEP 



 
 
 
 
 
 
 
 

 
STAGE 1B: 
Adding a right key event for the standing Lazarus object 

1-  Reopen the properties form for the obj_laz_stand object by double-clicking it in the objects folder or 
the resource explorer. 

2- Create a Key Press, <Right> then drag and drop Check collision action from the control tab. 
NOTE: Check collision is a conditional action that will not allow the next action to occur unless it checks as 
“true”. If the object collides with another object at a specified coordinate, it will check “true”. 

3- Set X to 0 and Y to 8 and enable the Relative option by checking the box. 
NOTE: Coordinates (0,8) move Lazarus slightly so he can sense what is under him.  The next block will run as a 
sub-procedure only when the collision checks as True.   He’ll need to look for somewhere else to go!   

4- Drag and drop a Start Block action. 
5- Add a Check Empty conditional action. Set X to 40 set Y to 0, and check the Relative option. 

NOTE: Check empty is a conditional action that will not allow the next action to occur unless it checks as 
“true”. If the object does not collide with another object at a specified coordinate (if the space is “empty”), it 
will check “true”. 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
6- Add a Change Instance action and select the obj_laz_right object. Select yes to Perform Events. 
7- Add an Else action from the control tab. 
8- Add another Check Empty conditional. Set X to 40 and Y to -40, and check the Relative option. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

DO THIS ON YOUR TUTORIAL GUIDE 

STAGE 1A CONDITIONAL STATEMENTS: Write two conditional statements for the two 

Animation End events not represented in the gold box above.  Use x and y coordinates 

(x, y) in your first statement. 

 The first statement is for step 10 under “Creating Object Resources”. 

 Note that the second IF/THEN statement applies to Lazarus “squished”. 



9- Add a Change Instance action and select the obj_laz_jump_right object. Select yes to Perform Events. 
10-  Finish the block with an End Block action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Adding a left key press event to the standing Lazarus object 

1- If you closed obj_laz_stand, reopen it because you are about to add more properties.  Add a Key Press, 
<Left> event then drag and drop a Check Collision action. Set X to 0 and Y to 8, and check the Relative 
option. 

2- Drag a Start Block adding it to the actions. 
3- Add a Check Empty conditional action from the control tab with X set to -40, Y set to 0, and the 

Relative box checked. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4- Add a Change Instance action from the  
main1 tab. Choose obj_laz_left from  
the change into menu.  Select yes to  
Perform Events. 
 
 
 
 
 
 
 
 

LOGIC SYSTEM FOR CHECK COLLISION 

 & CHECK EMPTY 

IF the right key is pressed, THEN check for a 

collision on right side of Lazarus. 

         -WHEN THERE IS A COLLISION THE BLOCK STARTS 

IF position on right (40, 0) is open (collision free), 

THEN change into Lazarus right. 
           -WHEN THE SPACE IS NOT OPEN CONTINUE WITH ELSE 
ELSE check for a collision one space above the 

space to the right (40, -40). 

IF that position is open, THEN change into Lazarus 

jumping right. 

 

Pay close attention to properties that 

you are adding for the left key event.  

Soon, you will be instructed to write 

conditional statements for this logic 

system.    



5- Add an Else action from the control tab. 
Add a Check Empty action with  
X as -40, Y as -40, and Relative  
enabled this checks diagonally left. 
Add a Change Instance, choosing  
obj_laz_jump_left and select yes to  
Perform Events. 

6- Add an End Block action to finish the  
block of actions. Do not close this  
properties form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

DO THIS ON YOUR TUTORIAL GUIDE 

 STAGE 1A & 1B HYPOTHESIS: Now it’s time to predict the behaviors of the Lazarus objects based 

on the properties applied to the sprite and objects.   

 Consider where Lazarus will move based on the presence of objects to his left or right. 

 Note that you will not be able to test the validity of your hypothesis until the end of STAGE 2. 

DO THIS ON YOUR TUTORIAL GUIDE 

 STAGE 1B CONDITIONAL STATEMENTS:  Write a series of conditional statements showing the 

logic system for the left key events.  You should use IF, THEN, and ELSE in the statements.   Use x and y 

coordinates in statements (x, y). 

 You should refer to the gold concept box LOGIC SYSTEM FOR CHECK COLLISION & CHECK EMPTY 

as a reference.  This is found on the previous page. 

 

Anticipation 
This is the first frame of  

the Lazarus assets that 

move to the left or jump  

to the left.  He is leaning  

to the right, in a position is preparing him to 

spring back to the left.  This creates an 

element of anticipation, so the player gets 

the sense that the object is getting ready to 

move either straight to the left, or up to the 

left.   Anticipation prepares the position of 

an object for the action that is about to 

happen.  A dancer bends his knees before 

jumping. A pitcher takes a stance before 

winding up to pitch.   A character may look 

off to the direction where it is going to 

move.   These are all examples of moves or 

expressions that give the player an 

expectation of natural motion, even if the 

character and the situation is unnatural. 

Staging     Preparing a scene is a crucial element 

of creating animation in a gameplay.  Putting the  

focus on the main character and preparing it for  

action is called staging.  In the Lazarus game, it  

is clear that the focus of attention is on the most important object in 

the scene. Lazarus is colorful, has a joyful smile, and expressive eyes.  

The Lazarus standing object stages the character for events and 

action that will occur, putting him in center of gameplay. 



STAGE 2: 
Adding a step event to the standing Lazarus object to make it fall 

1- Create a Step event to obj_laz_stand, selecting Step from the drop down that appears. 
2- Add a Check Empty action in the Step event, setting X to 0 and Y to 8, and checking the Relative option. 
3- Add a Jump to Position. Set X to 0 and  
4- Y to 8, and check the Relative option. 
5- Click OK to close the properties form. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Creating the wall sprite and object resources 
1- Create a new sprite called spr_wall using Wall.gif. 
2- Create a new object called obj_wall,  
3- assigning it spr_wall. Enable the Solid option. 

 
 
 
 
 
 
 
 
 
 
 

Creating a Test Room 
1- Create a new room called room_test. Click on the settings tab and write a caption (like “test room”). 
2- In the Room Properties form, set both Snap X and Snap Y to 40.  These fields are found at the top.  
3- Switch to the objects tab and select  

obj_wall under “Object to add with  
left mouse”.  Create a room with  
boxes that form flat areas and  
staircases. 

4- Change the“Object 
 to add with left 
mouse” to 
obj_laz_stand. 
Add an instance of 
the standing  
Lazarus.   

 
 
 

NOTE: All of the wall objects are squares set at 40 x 40 pixels.  
Setting the grid to these dimensions will allow you to neatly 
place them in the room. 

 

Start with obj_wall then  
switch to obj_laz_stand. 

 

In later stages, some wall 

blocks will be replaced by 

boxes in the room. For 

now, the wall blocks will be 

an easy object to use for 

testing your hypothesis and 

programming of properties 

for the Lazarus objects. 



 

 
 
 
 
 
 
 

Now it’s time to test your game, so go ahead and click on the green triangle () on the 
menu bar to run the game normally.   

 

DOES THE ACTION THAT YOU SEE AND THE CONTROL OF THE OBJECTS MEET YOUR 
HYPOTHESIS STATEMENTS?  

As you move Lazarus left and right using the arrow keys, you should see Lazarus move into open spaces on his 
left or right, or jump onto the wall blocks that on his left or right if they are present.  If you configured the wall 
blocks to look like steps, Lazarus should be able to climb them.  The GIF files used to make the Lazarus sprites 
and objects were designed to show a natural looking movement.   When Lazarus moves, you will see him lean 
in the direction he is going.  When he jumps, you see him squish down like a rubber ball before and after he 
jumps.   He has a happy expression on his face because he is content to be able to move freely through this 
room.  The creators of the Lazarus GIF assets understood that this effect will make the movement appear to 
be natural.   The movement should make sense to the player, even though this would never happen in real 
life.  The notion of a happy grape bouncing around seems plausible, doesn’t it? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
CONTINUE ON NEXT PAGE FOR IMPORTANT TUTORIAL GUIDE INSTRUCTIONS 

DO THIS ON YOUR TUTORIAL GUIDE 

 STAGE 2 HYPOTHESIS STATEMENTS:  Now it’s time to predict the behaviors of Lazarus as you expect 

to see them in the room you created with wall objects.   

 Is your hypothesis the same as it was at the end of STAGE 1?   If not, explain why it changed. 

DO THIS ON YOUR TUTORIAL GUIDE 

 STAGES 1 & 2 TEST & EVALUAITION: Write an evaluation of your hypothesis and programming 

properties from STAGES 1 & 2.    

 If you state “valid”, provide a detailed explanation of “why” the object behaves properly based on 

your hypothesis, and the events and actions that you programmed. 

 If you state “invalid”, make sure that you expose your errors in reasoning, or your errors in 
programming.     

 
Squash and Stretch and Exaggeration     All of the moving Lazarus objects apply the squash and stretch 

principal of animation. Characters and objects are shown to "squash" (become distorted or flattened) and 

"stretch" (become elongated) from motion and other natural forces like gravity.   The object changes shape 

from frame to frame to give the sense that forces are acting on it, not unlike a ball squeezing or compressing 

when it hits the ground, only to stretch  as moves away from the floor.   In animation or game design, the look 

of these behaviors is often exaggerated, drawing more attention to the nature of the motion, while keeping a 

sense of natural movement for the character.  In other words, it looks plausible.   Exaggeration is used in 

animation, often just to make sure that the player gets the idea  

of what is happening.  Sometimes it is simply to enhance the  

character and give it personality.   Lazarus’s big “google” eyes  

and joyful smile are out of proportion with the rest of his body. 

Hence, exaggeration is the enlargement of character, or object  

features beyond what they would be in reality. Study the sub-image  

frames of the object for Lazarus moving left.  Look for the way in  

which both squash and stretch and exaggeration are used. 



 
 
 
 
 
 
 
END OF STAGES 1 & 2.  REVIEW YOUR WORK ON THE TUTORIAL GUIDE.  STUDY THE 
TUTORIAL GUIDE RIGOR SCALE.  MAKE REVISIONS AND IMPROVEMENTS BASED ON THE 
SCALE.  UPLOAD COMPLETED TUTORIAL GUIDES TO EDMODO. 
 
 
 

DO THIS ON YOUR TUTORIAL GUIDE 

 STAGES 1 & 2 CONCEPT SUMMARY: Review the concepts found in the gold boxes throughout the 

tutorial.   Write a full paragraph describing how animation concepts are used in the behaviors of the 

Lazarus objects to achieve plausibility.  Use new vocabulary correctly in your writing. 

 Include concepts such as staging, anticipation, squash and stretch, and exaggeration. 

 


