THE TECHNOLOGY AND CRAFT OF COMPUTER GAME DESIGN

An introductory course in computer game design

TUTORIALS, GRAPHICS, AND COURSEWARE BY:

MR. FRANCIS KNOBLAUCH

TECHNOLOGY EDUCATION TEACHER
CONWAY MIDDLE SCHOOL
ORLANDO, FLORIDA

GAME BUILDING TUTORIAL FOR THE GAME

LAZARUS

*BASED ON THE GAME CREATED BY:
JACOB HABGOOD & MARK OVERMARS

*INCLUSIVE OF GAMEPLAY, GRAPHICAL/SOUND ASSETS, AND PROGRAMMING CONCEPTS

GRAPHIC ASSET ILLUSTRATIONS BY:
KEV CROSSLEY

TUTORIAL AND COURSEWARE DOCUMENTS INCLUDE:

Lazarus: Stages 1 & 2
Lazarus: Stages 3 & 4
Lazarus: Stages 5,6 & 7

STUDENT RECORD DOCUMENTS INCLUDE:
Lazarus: Galactic Mail: Stages 1 & 2
Lazarus: Galactic Mail: Stages 3 & 4
Lazarus: Galactic Mail: Stages 5, 6, & 7

COMPANION MATERIALS INCLUDE:

Glossary
Concepts Explained

REQUIRED SOFTWARE OR GAME ENGINE:
Game Maker 8.1 or Game Maker Studio

REQUIRED DIGITAL ASSETS:

*Lazarus Assets

ALL TUTORIALS AND REFERENCE RESOURCES FOR THIS COURSE ARE THE PROPERTY OF THE AUTHOR.
USE OF THIS MATERIAL WITHOUT PERMISSION FROM THE AUTHOR IS PROHIBITED.

THIS COURSE IN IS AN ALPHA STAGE.

TUTORIALS AND COURSEWARE ARE PENDING COPYRIGHT.

Lazarus: Stages 1& 2
The basic vocabulary and concept of animation using image and sub-image assets was introduced in Galactic
Mail. How do we apply these concepts in a creative sense to add value to an animation?

"When people laugh at Mickey Mouse, it's because he's so human; and that is the secret of his
popularity."
-Walt Disney

This observation by Walt Disney expresses a core concept of animation that is shared in a variety of
entertainment industries, including film, television, and video games. Does a mouse really sing and dance?
Do bugs have big eyes and toothy smiles? If you believed in ghosts, would you expect them to be friendly and
childlike? Animation can also make objects that exist in the real world take on life, like dancing cups and
saucers. Events and actions that could never happen in the real world can become believable. Imagine a
coyote running off of the edge of cliff, pausing to hover in mid-air long enough to show expression of fear.
Before falling and waving goodbye, before stretching and falling hundreds of feet to his demise.

Walt Disney called this artistic theory the “plausible impossible”. He referred to the appearance of reality
within situations and characters that would never exist in real life. The viewer becomes comfortable watching
characters and situations that would never exist naturally. In other words, unbelievable things seem
believable, and impossible things seem possible. The word plausibility applies here, as to be plausible means
that things have an appearance of being believable, or true. When an animation is plausible, people will be
comfortable with it, understand it, and connect to it, even though it is not possible in a real sense. Hence, the
importance of Disney’s concept of the “plausible impossible”.

In Lazarus, you will be deepening your understanding of animation by creating properties for a character
(named Lazarus) that give him lifelike qualities in both his movement and expression. In creating your
animated events and actions, Lazarus the grape will behave in a way that makes sense. He will be interacting
with realities of the physical world as well, as he will have to avoid the hazards of falling boxes in the
warehouse where he dwells. He will need to look, or “check” for empty spaces to dodge into, where he will be
safe from catastrophic events that will crush him. Even though he is a grape, his movements will appear to be
natural in the way he leans and jumps. He will express joy in being safe, and fear when it is obvious that there
is no escaping the falling boxes in the warehouse. The boxes themselves will take on the physical properties of
real objects, as they fall due to gravity. Lighter boxes will stack onto boxes that are the same weight or
heavier, and of course, a heavy box will crush lighter box. Hence, everything that happens in the gameplay of
Lazarus will make sense, even though grapes don’t really have eyes, facial expressions, and natural movement.
Typically, boxes do not fall from the top of a warehouse. The blend of real physical properties, familiar facial
expression, and movement all come together to make the gameplay and animation plausible.

As you work through STAGES 1 & 2, you can read the concepts (gold box) to learn about how plausibility is
achieved through techniques like squash and stretch, anticipation, staging, and exaggeration. In STAGES 1 &
2, properties in this game build will include the use of new conditional actions including check collision and
check empty, and the continued use of sub-procedures in blocks.

Complete the definitions for the vocabulary on the tutorial guide

BE SURE TO PAUSE TO COMPLETE HYPOTHESIS AND EVALUATIONS WHEN PROMPTED.

DO NOT USE THE TEST BUTTON IN THIS ACTIVITY UNTIL YOU ARE PROMPTED.

THERE ARE NO SAVE PROMPTS IN THIS TUTORIAL, SO SAVE REGULARLY.
START HERE BEFORE CONTINUING TO NEXT PAGE:
Set up Game Maker in advanced mode. Save and name your file initials_lazarus.

STAGE 1A:

Creating the sprite resources with specific origins
1- Create a new sprite called spr_laz_stand using Lazarus_stand.gif from the Lazarus Assets folder on

your computer desktop. Click the OK button to close the form.

2- Create another sprite called spr_laz_right using Lazarus_right.gif. Under origin, set the Y value to 40
(so it shows X as 0 and Y as 40).
3- Create a spr_laz_jump_right with the Lazarus_jump_right.gif. You also leave X value of 0 and seta Y
value of 40 just as you did with the last sprite.
4- Create a spr_laz_left sprite using Lazarus_left.gif. On this sprite, set both the X and Y values to 40 (so

it shows X as 40 and Y as 40) then close the form by clicking OK.

5- Create a spr_laz_jump_left sprite in exactly the same way using Lazarus_jump_left.gif . Again on this
sprite, set both the X and Y values to 40 (so it shows X as 40 and Y as 40) then close the form by

clicking OK.

6- Create two more sprites called spr_laz_afraid and spr_laz_squished using Lazarus_afraid.gif and

Lazarus_squished.gif. These sprites are
the same size as the standing sprite

(40 x 40 pixels) so the origin can be left

at0for Xand O for.

Creating object resources

Wiclh €0 Heacht 80
Humber of suomages 7

- 5|

Shes:

_ Cerle

L v |

spr_laz_stand
spr_laz_afraid
spr_laz_squished

T
Wik 8] Hegho 30
“unbes ol sbenazex 7

=

S

spr_laz_right
spr_laz_jump_right

1- Create a new object called obj_laz_stand. Assign it spr_laz_stand, then click OK.
2- Create a new object called obj_laz_right and give it the sprite named spr_laz_right. Don’t close the

form because you are about to add events and actions.
3- Click Add Event and select Other, then select Animation End event. This is the event that will stop the

animation when it reaches the last sub-image.
4- Drag and drop a Jump to Position action in this event from the move tab.
5- In the Jump to positon window, set X to 40 and Y to 0, and make sure that the Relative option is

enabled.

R
Worfl Hegw X
Huvker of subenage 7
13

Show

o QK

spr_laz_left
spr_laz_jump_left

6- Add a Change Instance action (mainl tab) below this and select obj_laz_stand as the object to change
back into. Click OK to close the object properties form.

Events: Actions:
- Anifation End i ' Jumps ta posilion (40.0]
Jump to Position
Applins to
@ @ Selt
Other
Object:
w: (£
y 0
V| Relatiye
| \/hTJE_] | % Cangel |

Events

T | |

Actions

I

m Jump to position (40.0)
mmum istmee inta ol

pe
Change Instance
- Applies to
B ® ser
Other
Objwct

change inte: ob|_laz_stand

perform events: nol

[Lw~or |

" |

=,

| . Cancel |

NOTE: In your first Hypothesis, be ready to anticipate behavior based on these X and Y settings for all of these
Lazarus objects (hint: the left and right moves and jumps occur with boxes that are all 40 x 40 pixels. You will
need to explain what Lazarus will look like when he is moving, and what he will look like at the end of the
movement.
7- Create another object called obj_laz_left and assign it spr_laz_left. Again, leave the form open
because you about to add some events with action.
8- Repeat the events and actions as before (steps 4-6), but this time set X to -40 for the Jump to Position
action in obj_laz_left.

Name: obj_laz_left Events: Actions:
Sprite Jump to position [-40,0)
o Ispr_laz_lefl & Change instance into obj_laz_stand
[(New] [Edt]

9- Create another object called obj_laz_jump_right and assign it spr_laz_jump_right. Repeat the steps 4
through 6 process again, but now setting the Jump to Position coordinates to X to 40 and Y to -40 for
obj_laz_jump_right.

Events: | Actions:

i £ el notoposniods)

Change instance into obi_laz_stand

Mame: obj_laz_jump_right

Sprite

S lspr_laz_iump_rigl' =)
| MNew | [Edit

10- Create one more Lazarus with obj_laz_jump_left and assign it spr_laz_jump_left. Do steps 4 through 7
again, this time setting X to -40 and Y to -40.

Name: obj_laz_jump_left Events: Actions:
Sprite 4 'Mma.W'End Jump to position (-40,-40]
L lspr_laz_iump_left & Change instance into ob|_laz_stand
[New | [Edt |

Creating the squished Lazarus object resource

1- Create an object called obj_laz_squished and it spr_laz_squished.

2- Click Add Event and choose Other, then Animation End event from the list. Drag and drop the Display
Message action found in the main2 tab.

3- In the message properties, you can type something like “YOU’RE HISTORY !#Better luck next time” into
the message properties. Don’t use the quotation marks. You should type the # symbol in the middle of
the message so it starts a new line from word. Try to come up with something fun. Another text might
be “BUMMER! YOU’RE SQUISHED# YOU SHOULD TRY AGAIN!” Just keep it positive.

4- Drag in the Restart Room action from main1l after the message action and press OK to close the object

properties form.

@ Object Properties: obj Jaz squished =&
CONDITIONAL STATEMENTS £ =

HName: oy lsz_squshed

=){ Display a message

FOR LAZARUS OBJECTS: s

LAZARUS MOVING RIGHT: IF the animation ends
at (40, 0), THEN change into Lazarus standing.

5 spe_lz squiched =
New Edt

>
Treplay Messaze

Hestat the cunent room

TVebke IS 3
LAZARUS MOVING LEFT: IF the animation ends Destie 0 = i‘i" @
at (-40, 0), THEN change into Lazarus standing. T~ Peusient c'_:m '
Pasent: {er paerts =1 =
LAZARUS JUMPING RIGHT: IF the animation i =

ends at (40, -40), THEN change into Lazarus

standing.

WRITE MORE CONDITIONAL STATEMENTS /0K

IN NEXT TUTORIAL GUIDE STEP

['Ji; [XL |—

l YT I e l YT l YT I ;',umml L AO

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 1A CONDITIONAL STATEMENTS: Write two conditional statements for the two
Animation End events not represented in the gold box above. Use x and y coordinates
(x, y) in your first statement.

e The first statement is for step 10 under “Creating Object Resources”.

¢ Note that the second IF/THEN statement applies to Lazarus “squished”.

STAGE 1B:

Adding a right key event for the standing Lazarus object

1- Reopen the properties form for the obj_laz_stand object by double-clicking it in the objects folder or

the resource explorer.

2- Create a Key Press, <Right> then drag and drop Check collision action from the control tab.
NOTE: Check collision is a conditional action that will not allow the next action to occur unless it checks as
“true”. If the object collides with another object at a specified coordinate, it will check “true”.

3- Set Xto0andY to 8 and enable the Relative option by checking the box.
NOTE: Coordinates (0,8) move Lazarus slightly so he can sense what is under him. The next block will run as a
sub-procedure only when the collision checks as True. He'll need to look for somewhere else to go!

4- Drag and drop a Start Block action.

5- Add a Check Empty conditional action. Set X to 40 set Y to 0, and check the Relative option.
NOTE: Check empty is a conditional action that will not allow the next action to occur unless it checks as
“true”. If the object does not collide with another object at a specified coordinate (if the space is “empty”), it
will check “true”.

|
@ Utgert Poopartus =iy faz_staesd
"

Howw gty Lax_ st Lvere: Acton:

- - piBe

© o e -

Crech Colbzion -
L] L o
odes
¥ Vidde ca "‘3 & S
Oy
Depm: Ot
Parnrerd
Paes E..., paserd :
(LS aywepepreng
0 Ston rha s chjusts-. Driy sok -
- 4
Dan |
1ototr i Wt SRR
L - - ot -
| o 0 X Cancel
=TS v 0 X Comced

6- Add a Change Instance action and select the obj_laz_right object. Select yes to Perform Events.
7- Add an Else action from the control tab.
8- Add another Check Empty conditional. Set X to 40 and Y to -40, and check the Relative option.

& Ohsxt Propess 03 \ar stasel .

Borw oty wo_owd Everts ke drmrs 7’='.=" ® Utgect Dipputies ol e et ~RE~
L~ yree— | e damarn |4
L B v, b, St ol w bk @ E_;] P S m_ a!! oo o) 2 00N o 3 DORIK e l»ﬂ '!’ i

W Chasge Insmance ﬁ 1 4 porton i colteem hee o 0 ¥ Creck Erephy | P ‘@ '@ ‘:’.;) i
e Bl ovormciel EN T 3.
Qwetr 0 . f:"« - I'—.— - Jlvhbe D &5 @u.v‘- retwes vés oh s Ober .!,

: o e q O = N K
zey Beews Deotte 0 Ctnes (W) Fhoe & @ Q] |

paere T = = d

& 153 L 4 !
| : 2@y o - v @
pony St Yt » B S q =4 . i
1 s | EE s
- ° ’]l cpocty. (Iriy 1ot o Ei-';j ‘,:| J
: : i
L |
L 1
= S —
p— — < Pedaer wor
v ¥ X Corcsm . E
- v | X, Corxet
—

9- Add a Change Instance action and select the obj_laz_jump_right object. Select yes to Perform Events.

10- Finish the block with an End Block action.

LOGIC SYSTEM FOR CHECK COLLISION
& CHECK EMPTY
IF the right key is pressed, THEN check for a
collision on right side of Lazarus.

-WHEN THERE IS A COLLISION THE BLOCK STARTS
IF position on right (40, 0) is open (collision free),
THEN change into Lazarus right.

-WHEN THE SPACE IS NOT OPEN CONTINUE WITH ELSE
ELSE check for a collision one space above the
space to the right (40, -40).

IF that position is open, THEN change into Lazarus
jumping right.

® Osject Propertin, oty Uy itasd = W B
ave cbi e sand Evants Achony g
sooe S (G ooy | O @ T
v I?_ Change Irotance & St of & bhock L@ l@ O 5
= Apphe: % | f\:@ 1 2 potton i collen iae ((|$
V) Vil E] . é" Eﬂ Drarge rtance vt oy :) 3 3
Irer -
Dagty 0 Dbpact [y Elee & O @
L f‘@l:p::imntdwvm \/@EH
s |
Mk r i petumevents B T tnd ot abiech E . ') _
T»< varates
2 >
1 o] 9 E] 3
- g
[won X Cares
-

Adding a left key press event to the standing Lazarus object
1- If you closed obj_laz_stand, reopen it because you are about to add more properties. Add a Key Press,
<Left> event then drag and drop a Check Collision action. Set X to 0 and Y to 8, and check the Relative

option.

2- Drag a Start Block adding it to the actions.
3- Add a Check Empty conditional action from the control tab with X set to -40, Y set to 0, and the

system.

Relative box checked. : —
@ Obyject Peopeties bty faz stand = i Bl a
Uhject Peogemer oty laz stind = Nave oby b vand Evert: fezbore Qunstee 5
Nove oby_k_sand Evernt: fzbore Cuetiorgl | Spde . 3 @) I:)
o O @] o g : 990
O [oham & pree Righo - [9 i N | [Ok Colicion = C) [D l@
Y- 7" Chock Colbaion) . Spphes b
=, = S0ty ® l'r., 4 ke Sobd I@ 8 5ed Crer
¢ Vistle Sobd |@ :W;;’h c(yg’.ﬂ ek 0 ?t’:a L\ 3 @ g
Lecte 0 Cihes & |5 Pevuistant P @g ;
Ctaact Payect I-‘ncpm- | = §
Peyuitant v EI v l* x % ‘?,.
Borct [npmwes || 3 If Cade Etiios oy y 8 D E . .'l
- ~ < Verwtes
Mt '-‘:ama: wir N e D E @) Show rfaman § bpects (rky okd -, B 9 E 3
| Show rfometin cbyscts by cobd = Emfé v
| [
= . 7 Aledgroe Nt —
|
4 Telgre Nt ‘
4- Add a Change Instance action from the p= ———
. . 20 Properbes: oby oz st2 B =
main1 tab. Choose obj_laz_left from | % =i S ——
. Name: obf Iz dtand Beex - §5
the change into menu. Select yes to e O””"’ pe— . g . 5l
Perform Events. o
2 BER
|
Pay close attention t ties that E | it M —
ay close attention to properties tha A 18
y . prop J Vit El Emmmt& @ ;.n
you are adding for the left key event. - Stupds ——— [
ill be i i 4 ER®;:
Soon, you will be instructed to write 3|
conditional statements for this logic il i ||
? e i BEE]
al
3!

5- Add an Else action from the control tab.

[

. . @ Object Properties: obi laz stand E E f
Add a Check Empty action with = o Duestors —— |z |
. Hame oby b3z stad ‘E’f’: Achons = 2
X as -40, Y as -40, and Relative w @) oo scimssiois EIDIOE
enabled this checks diagonally left. © 2 Satdatik @ @ @):
Add a Change Instance, choosing Nt .,ap:dmomm @ @ ¢ =
o Tz iumo feft and cel e 2 @0®;
obj_laz_jump_left and select yes to _ e @&W:mmmw = 121
Perform Events. . N s | e e NCIEE
6- Add an End Block action to finish the . e v EI @ 5
block of actions. Do not close this ot] ' ‘ . |
properties form. s [3 . ® Bl & —_—
; : iohs: il Oy 30bd 3 Veratks i3
Name: obj laz_stand Events . AC}.‘T % B o - m
Spite _‘w press <Left> J@ If there is a collision at a position
© Jsnf Change Instance P‘"’ A Start of a block Anticigation
E] Applies to If & position is callision free This is the first frame of
o Self ~ . S the Lazarus assets that
7 Visble & Ot Change instance into oby_laz_left .
=4 - Elbﬂ move to the left or jump
§) Object: El . .
Dept: i @ o to the left. He is leaning
i "ap°s"'°" lscoloniies to the right, in a position is preparing him to
Parert: [change into: | 0bLlaz_jump_ef & SRS EES | spring back to the left. This creates an
Mask: [| peifomevents: yes & 7 End of a block element of anticipation, so the player gets
E‘ the sense that the object is getting ready to
24 move either straight to the left, or up to the
left. Anticipation prepares the position of

Staging
of creating animation in a gameplay. Putting the
focus on the main character and preparing it for
action is called staging. In the Lazarus game, it
is clear that the focus of attention is on the most important object in
the scene. Lazarus is colorful, has a joyful smile, and expressive eyes.
The Lazarus standing object stages the character for events and

Preparing a scene is a crucial element

action that will occur, putting him in center of gameplay.

DO THIS ON YOUR TUTORIAL GUIDE

an object for the action that is about to
happen. A dancer bends his knees before
jumping. A pitcher takes a stance before
winding up to pitch. A character may look
off to the direction where it is going to
move. These are all examples of moves or
expressions that give the player an
expectation of natural motion, even if the
character and the situation is unnatural.

as a reference. This is found on the previous page.

STAGE 1B CONDITIONAL STATEMENTS: Write a series of conditional statements showing the

logic system for the left key events. You should use IF, THEN, and ELSE in the statements. Usexandy
coordinates in statements (x, y).
e You should refer to the gold concept box LOGIC SYSTEM FOR CHECK COLLISION & CHECK EMPTY

DO THIS ON YOUR TUTORIAL GUIDE

e Consider where Lazarus will move based on the presence of objects to his left or right.
e Note that you will not be able to test the validity of your hypothesis until the end of STAGE 2.

STAGE 1A & 1B HYPOTHESIS: Now it’s time to predict the behaviors of the Lazarus objects based
on the properties applied to the sprite and objects.

STAGE 2:

Adding a step event to the standing Lazarus object to make it fall
1- Create a Step event to obj_laz_stand, selecting Step from the drop down that appears.
2- Add a Check Empty action in the Step event, setting X to0andYto 8, and checklng the Relative option.

3- Add a Jump to Position. Set X to 0 and
4- Y to 8, and check the Relative option.
5- Click OK to close the properties form.

'l- !MJ

Choose the Fvent to Add (2w @
[& Croate | [3 Mouse |
[& peavoy | [Other | :
(12 alaim | [o 1 E'
""""" il W BC iy =,
L, N B
I o Cullisit| Begin Step !]
| S Kuyhu" Frd Step] 5
| 2, Cancwl |

Creating the wall sprite and object resources
1- Create a new sprite called spr_wall using Wall.gif.

— (.) [r——

s x
w. -
5=
ii

?

3 Orly sobd

/ Relaree

2- Create a new object called obj_wall,

3- assigning it spr_wall. Enable the Solid option.

[W——— (ot b by
- e e]
M v
S | @ ot b L
biinrion -
- s oo 9 - ap e
- 1 S ' P Susers
. e | o 1
i v S
Notws sty § | Mot ‘
Dok \ UF,. .
a by
o i BE N Ve
- Vi 3 LS oodte ¥ .
-
—— .
v i N
4 - a0 Geue
Lavptn
o bt
¢« B B —
e N ge
P T »e
o —)

Creating a Test Room

Actone

((‘. It a posdon ix coliiion bee

Parent: l<no parent> é£
Mask: l<same assprite> Sl

[@) Show Infarmation]

7 Relatwe
E
|@| Object Properties: obj_wall
Name: obj_wall Events:
Sprite
BEa = :ar: Iatker Sﬁ?ies' solme \(/;/:;II
ocks will be replace
_ P Y
boxes in the room. For
Eivistle [@1Soid now, the wall blocks will be
Rente 0 an easy object to use for
[Persistent

testing your hypothesis and
programming of properties
for the Lazarus objects.

I

1- Create a new room called room_test. Click on the settings tab and write a caption (like “test room”).
2- Inthe Room Properties form, set both Snap X and Snap Y to 40. These f|eIds are found at the top.
3- Switch to the objects tab and select] =« 2 :

left mouse”.

boxes that form flat areas and

staircases.

4- Change the“Object |
to add with left
mouse” to
obj_laz_stand.
Add an instance of
the standing
Lazarus.

Beckgraands s

obj_wall under “Object to add with | __*
Create a room with

@ 2203 5 Comg @ [Semy 40

g | oot

Start with obj_wall then

switch to obj_laz_stand.

vlr)l_]uw* 2

__ backgrounds
abjects settings

Name: room_test

Caption for the room:
test room

Width: 640

Obect o 234 reih e

P ler_sheent -

Height: 480
Speed: 30

7] Persistent

|| Creation code

NOTE: All of the wall objects are squares set at 40 x 40 pixels.
Setting the grid to these dimensions will allow you to neatly

place them in the room.

S ——

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 2 HYPOTHESIS STATEMENTS: Now it’s time to predict the behaviors of Lazarus as you expect
to see them in the room you created with wall objects.
e Is your hypothesis the same as it was at the end of STAGE 1? If not, explain why it changed.

Now it’s time to test your game, so go ahead and click on the green triangle (») on the
menu bar to run the game normally.

DOES THE ACTION THAT YOU SEE AND THE CONTROL OF THE OBJECTS MEET YOUR

HYPOTHESIS STATEMENTS?

As you move Lazarus left and right using the arrow keys, you should see Lazarus move into open spaces on his
left or right, or jump onto the wall blocks that on his left or right if they are present. If you configured the wall
blocks to look like steps, Lazarus should be able to climb them. The GIF files used to make the Lazarus sprites
and objects were designed to show a natural looking movement. When Lazarus moves, you will see him lean
in the direction he is going. When he jumps, you see him squish down like a rubber ball before and after he
jumps. He has a happy expression on his face because he is content to be able to move freely through this
room. The creators of the Lazarus GIF assets understood that this effect will make the movement appear to
be natural. The movement should make sense to the player, even though this would never happen in real
life. The notion of a happy grape bouncing around seems plausible, doesn’t it?

DO THIS ON YOUR TUTORIAL GUIDE

STAGES 1 & 2 TEST & EVALUAITION: Write an evaluation of your hypothesis and programming
properties from STAGES 1 & 2.
¢ If you state “valid”, provide a detailed explanation of “why” the object behaves properly based on
your hypothesis, and the events and actions that you programmed.
e If you state “invalid”, make sure that you expose your errors in reasoning, or your errors in
programming.

Squash and Stretch and Exaggeration All of the moving Lazarus objects apply the squash and stretch
principal of animation. Characters and objects are shown to "squash" (become distorted or flattened) and
"stretch" (become elongated) from motion and other natural forces like gravity. The object changes shape
from frame to frame to give the sense that forces are acting on it, not unlike a ball squeezing or compressing
when it hits the ground, only to stretch as moves away from the floor. In animation or game design, the look
of these behaviors is often exaggerated, drawing more attention to the nature of the motion, while keeping a
sense of natural movement for the character. In other words, it looks plausible. Exaggeration is used in

animation, often just to make sure that the player gets the idea
of what is happening. Sometimes it is simply to enhance the ' o

character and give it personality. Lazarus’s big “google” eyes g é % %
and joyful smile are out of proportion with the rest of his body. meed et v i
Hence, exaggeration is the enlargement of character, or object
features beyond what they would be in reality. Study the sub-image fy

frames of the object for Lazarus moving left. Look for the way in % %
which both squash and stretch and exaggeration are used. et =

&

maeb

CONTINUE ON NEXT PAGE FOR IMPORTANT TUTORIAL GUIDE INSTRUCTIONS

DO THIS ON YOUR TUTORIAL GUIDE

STAGES 1 & 2 CONCEPT SUMMARY: Review the concepts found in the gold boxes throughout the
tutorial. Write a full paragraph describing how animation concepts are used in the behaviors of the
Lazarus objects to achieve plausibility. Use new vocabulary correctly in your writing.

¢ Include concepts such as staging, anticipation, squash and stretch, and exaggeration.

END OF STAGES 1 & 2. REVIEW YOUR WORK ON THE TUTORIAL GUIDE. STUDY THE
TUTORIAL GUIDE RIGOR SCALE. MAKE REVISIONS AND IMPROVEMENTS BASED ON THE

SCALE. UPLOAD COMPLETED TUTORIAL GUIDES TO EDMODO.

