
Lazarus: Stages 3 & 4
In the world that we live in, we are a subject to the laws of physics. The law of gravity brings objects down to

earth. Actions have equal and opposite reactions. Some objects have more mass than other objects, as

measurable by weight. We can continue to list some basic laws and principles that you can connect to in

everyday life. In developing video and computer games, sometimes we have to consider how things behave

in the real world based on physics. The study of physics is a science that deals with matter and energy and the

way they act on each other in heat, light, electricity, and sound, and motion. If I am hit by an acorn that falls

out of a tree from ten feet high, it will not hurt quite as bad as a bowling ball that falls from a shelf that is ten

feet high. This hypothesis is validated by laws of physics. The two objects will fall at the same speed, but the

mass of the bowling ball gives it more momentum, hence it hits me with more force.

The example above is what you would expect in the real world. As studied in STAGES 1 & 2, animated action

in a game can occur in a way that looks familiar to us, or it can be exaggerated over what may typically happen

in reality. In either case, animation in computer and video games can be created in way that feels comfortable

or sensible to us, even though the characters and the action are fantasy. In programming your properties,

you can consider the way things behave in nature based on physics. Even though movements and action can

be exaggerated, the behaviors become more plausible when they occur in a way that is recognizable. If you

apply physics in game building, the physical behaviors of events and actions that you see every day can be

used as a reference to plan what will happen in the gameplay.

Game Maker has numerous properties that can be used to simulate physics. In STAGES 3 & 4 you will create a

logic system that uses collision events to establish physics properties for objects. You will show, through

animation, the varying mass of objects and what happens when a heavy object collides with something light.

As boxes fall, they will either stack up on equal weight or heavier boxes, or crush lighter boxes. This constant

dropping of boxes will be controlled by a special object called a controller object. This object is invisible, but

has properties that control what happens to other objects. In this game, it controls the constant dropping of

boxes. Fixed move actions will simulate gravity. Other physics principles for game design, like friction, will be

explored in future tutorials.

It is impossible that falling boxes in a warehouse will always find someone to fall on. Yet they always seem to

find Lazarus. You will include a variable within a “Jump to” action that will always put a box over Lazarus. A

variable is an unknown quantity. It can assume any one of a set values. The set of values might be a domain

for x values, or a range for y. In the box properties, the variable will always be equal to the location of Lazarus

as he moves and jumps left or right along the domain (x axis) of the room.

Through the use of animation, you will show how Lazarus behaves when he knows that something heavy is

coming down on him. Even though this would never happen in a warehouse, it will make sense to the player

because of the magic of animation properties, a connection to physics, and the use of a variable within a

property.

Be sure to complete the vocabulary definitions on your tutorial guide before proceeding.

 BE SURE TO COMPLETE HYPOTHESIS STATEMENTS FOR EACH STAGE.

 () DO NOT USE THE TEST BUTTON IN THIS ACTIVITY UNTIL THE END!

 OPEN YOUR FILE YOU SAVED AS initials_lazarus

 THERE ARE NO SAVE PROMPTS IN THIS TUTORIAL, SO SAVE REGULARLY.

RESUME GAME BUILD ON NEXT PAGE.

STAGE 3:
Creating new box sprite and object resources for the game

1- Create a sprite called spr_box_stone from the StoneBox.gif asset.
2- Create spr_box_card using CardBox.gif.
3- Now create sprites called spr_box_metal using MetalBox.gif.
4- Create spr_box_wood using WoodBox.gif.
5- Create a new object called obj_box_stone and give it the sprite

for the stone box. Check the Solid box.
6- Repeat the previous step to add objects for obj_box_metal,

obj_box_wood and obj_box_card.

Creating the falling stone objects for the game:
1- Create a new object called obj_falling_stone, using the

spr_box_stone, making sure to check the Solid box in
the form.

2- Add a Create event and include a Jump to Position action
in the event. Type the variable obj_laz_stand.x (the
horizontal position of Lazarus) into X and set Y to -40).

3- Next include the Move Fixed action, select the down arrow
and set Speed to 5.

4- Add a Collision event with obj_laz_stand
and include a Change Instance action in it.
Select Other for the Applies to option, so
that it changes the Lazarus object rather
than the box. Select the obj_laz_squished
and select yes to Perform Events.

This variable obj_laz_stand.x must be exact.

The object name in front of .x must match the

name of your object in the resource explorer.

Variables As you create actions, you may have to assign

a value to a property without knowing what that numerical

value is going to be at any time during gameplay. As the

action of a game is always changing, the values of variables

may also be changing. For example, as an object (like

Lazarus) is moving, the x and y coordinates for its location

are always changing. Of course, the numeric values for x

and y will change, or vary. Variables are letters or other

symbols that represent those unknown numbers or values.

The variable for x in the “Jump to” action (shown on right)

will always be equal to the x location of Lazarus in the

room. As he jumps, the y value for the location of the

stone will always be equal to -40 (hiding just above the top

of the room). The x location of the stone will always be

equal to the x location of Lazarus. So as Lazarus moves

from left to right, the stone will always be created at an x

value equal to the x location of the Lazarus origin. This will

always put the stone directly above Lazarus! Seems kind

of dangerous! The room measures to a width of 640 pixels,

so the value of the variable obj_laz_stand.x will include

any value in the domain from 0 to 640.

5- Add another Collision event, this time with obj_wall. Include a Move Fixed action and select the
middle square with a Speed of 0. Add a Change Instance action, and select the stationary box
obj_box_stone.

6- Add a third Collision event with obj_box_stone, adding the same two actions as with the wall above.

7- Add a fourth Collision event with obj_box_metal. Include a Destroy Instance action and select the

Other object.
8- Add the fifth Collision event with obj_box_wood with an identical Destroy Instance actions as we did

in step 7 and selecting Other.
9- Finally, add a sixth Collision with obj_box_card, again selecting Other in the Destroy Instance property

form. Click OK to close the obj_falling_stone form.

The Physics in Lazarus In the Lazarus Stages 1 & 2,

animation techniques like staging, squash and stretch,

exaggeration, and anticipation were used to give

Lazarus life-like qualities. The behaviors that you see,

although unreal, are based on real physics. The boxes

that are created above Lazarus will be made of

different materials, some with a mass (weight) that is

greater than others. We haven’t said much about

what happens to these boxes, but with the presence

of gravity, you can probably guess what they do!

Naturally, they all fall at the same speed. But due to

physics, what do you expect to see if a lighter box falls

on a heavier box? What if a heavy box drops on a

lighter box? And what if one falls on Lazarus? Think

about this as you set more properties.

Physics in Game Design Everything that you experience

in your life is connected to physics. As a passenger in a

car, you feel your body move forward as it comes to a

stop. The mass in your book bag increases (gets heavier)

when you have a lot of homework. If a pencil rolls off of

your desk, it falls to the floor. You are comfortable with

these actions because they are natural and normal. When

you understand why they occur, you are understanding

physics. In game design, you can simulate physics if you

consider how things behave in nature, based on mass and

the presence of gravity. Animation will seem natural if

the action has the appearance of physics, based on what

we see every day. Even if the action is a fantasy, unusual,

or impossible, you can use the appearance physics to

make it seem plausible.

More About Variables In Game Maker, there are “built-in” variables that can be set for objects, or individual instances

of the objects in the room. Built-in variables can be set for a variety of object properties besides x and y coordinates. In

fact, you have already used them in other tutorials. If you built Evil Clutches or Galactic Mail, you have used variables to

set coordinate, direction and speed properties. Do you recall using a variable for jump to in Galactic Mail with a value

object_specialmoon.x and object_specialmoon.y? Formulas can also be used to define variables. Go back to Galactic

Mail and look for a variable for direction that was set to random(360). Another variable was then set to add control to the

object, dividing the random value by five (direction/5). What did these variables do? Try going back through past tutorials

to look for the use of variables in your programming. You can also make your own variables in Game Maker. In more

advanced game design, variables are important for writing scripts. Global and local variables will be studied in future

tutorials, and you can read more about variables in Concepts Explained.

Other falling boxes for collisions with different kinds of boxes (no illustrations)
1- Create obj_falling_metal, obj_falling_wood, and obj_falling_card using the spr_box_metal,

spr_box_wood, and spr_box_card sprites respectively.
2- Do the following for each of these objects (this a repeat of steps 2 and 3 in the previous procedure).

Add a Create event and include a Jump to Position action in it. Type the variable obj_laz_stand.x (the
horizontal position of Lazarus) into X and set Y to -40. Also add a Move Fixed action, select the down
arrow and set Speed to 5. Make sure that these two actions are exact and included in the Create
event for each of these objects.

3- Again, do the following for each of these objects (repeating step 4 in previous procedure). Add a
Collision event with obj_laz_stand and include a Change Instance action in it. Change the Applies to
option to Other, so that it changes Lazarus rather than the box. Select the obj_laz_squished and select
yes to Perform Events.

4- Follow the same basic steps in the last procedure, following steps 5 through 9 for each of these
objects. Since the collision properties vary in the falling objects, you will have to use the property
settings shown in the chart below for the falling metal, wood, and card objects. The falling stone
settings are also included in the chart, although they should have been done in falling stone steps 1
through 9 above. Check the settings for each falling box object carefully.

This is a tedious process, so take
your time as you set the
collision properties for each
box.

Creating next box object resources for the game (no illustrations)
1- Create a new object called obj_next_stone, give it a stone box sprite, and enable the

Solid option. That's it, so click OK to close the object properties form.
2- Create objects for obj_next_metal, obj_next_wood, and obj_next_card using the appropriate sprites.

As you did with the next stone, enable the Solid option. Click OK to close the forms.

STAGE 4:

Building a controller object resource
1- Create a new object called obj_controller. There will be no sprite for this object.
2- Add a Step event, select Step from the menu event.
3- Drag and drop a Test Instance Count conditional action found in the control tab. Choose the

obj_falling_stone object. Leave Number at 0 and Operation as Equal to. Click OK to close the form.

NOW LET’S TRY THE COPY AND PASTE PROCEDURE

4- Right click on the Test Instance Count action that you just created and select Copy. After that, Right
click again in the white area below the action and select Paste.

5- Repeat this Copy/Paste procedure two more times so that you
have a total of four Test Instance Count actions.

6- You will leave the first Test Instance Count action alone
(this is the one that will count the instances of the falling stone
object). You will however, need to open the second
Test Instance Count action form by clicking on it, then changing it
the falling stone object to obj_falling_metal. Click OK to close
the form when you are done.

7- On the third action in the list, change the object to obj_falling_wood, and then obj_falling_card on the
fourth action just as you did step 6.

Copying and Pasting In the previous gold

concept box, you read about parent/child as a

setting that makes programming faster (to be

learned later). But there is an easy way that for

you to speed up the programming. Using a

typical copy and paste procedure, you can copy

actions, with all of their properties, and paste

them for duplication. You can even open

different objects and paste them there too!

DO THIS ON YOUR TUTORIAL GUIDE

 STAGE 3 HYPOTHESIS STATEMENTS: Write a hypothesis for the behaviors you expect to see with the

Lazarus and box objects. Use appropriate new vocabulary in your hypothesis and cite events and actions.
Think about where the instances of the boxes will appear and what they will do. Explain why.
How is gravity and the difference in mass of each box going to be simulated? Explain why.

Controller Objects Controller objects are

invisible objects with no sprite assignment. They

can control various parts of gameplay, but they are

not part of the game play. In Lazarus, a controller

object sets the timing and appearance of box

instances. They can also control parts of the game

that not included in the game play. Examples might

be the presence of background music, the display

of point score, and other messages or information.

RIGHT CLICK IN

BLUE AREA.

RIGHT CLICK IN

WHITE AREA

BELOW THE

ACTION.

8- Add a final Test Instance Count action for the obj_laz_stand object, this time setting the Number to 1
and leaving the Operation as Equal to.

Adding a block sub-procedure to your controller object
1- If you closed the obj_controller properties form, go ahead and reopen it.
2- Drag and drop a Start Block action.
3- Add a Change Instance action. Under Applies to select the bullet for Object. In the drop down menu

to the right of Object, select obj_next_stone. In the drop down menu to the right of Change Into,
select obj_falling_stone, and the below that select yes to perform events.

4- Add three more Change Instance actions to change obj_next_metal objects into obj_falling_metal
objects, obj_next_wood into obj_falling_wood, and obj_next_card into obj_falling_card.

The Box Controller
If it seems like cruel fate that hazards

are always finding Lazarus. Blame it

on the controller object. It is going to

keep a steady supply of boxes

dropping into the warehouse. At

least Lazarus should have a fighting

chance. These Test Instance Count

actions play a role in that. Anything

that happens after the conditional

actions in this Step event, will only

happen when there are no falling

boxes (although that doesn’t last

long). Continue the game build from

here by adding a block. Think about

what this controller object is doing to

control falling boxes.

5- Add a Create Random action (main1 tab) and select the four different next box objects as shown
ingraphic below. Set X to 0 and Y to 440, and leave Relative disabled.

NOTE: These coordinates will put an instance of the next box where in the lower-left corner of the screen.
The player will see this image and will be able to anticipate the next image to drop from the top of the room.

6- Finally, include an End Block action to conclude the block of actions that are dependent on all the
conditions above them being true.

Editing the Test Room and adding the Controller Object

1- Reopen the test room.
2- Edit the room by right clicking and deleting boxes in the middle of the room so that it leaves walls on

both sides and across the bottom.
3- Add one instance of the controller object into the room. It will appear as a circle with a red question

mark, but will be invisible when you run the test.

Controller Objects and Playability
Although controller objects themselves are

not part of the gameplay, they can affect the

playability of a game. In Galactic Mail, you

learned the importance of sharing game

information by listing things like event keys,

and what to do with them during gameplay.

It may also be helpful to provide information

about the gameplay while the game is in

progress. Information, such as changes that

are about to occur, might help the player

make important decisions during gameplay.

This controller object will provide something

important that the player will want to know.

What is that information? What will it look

like? How and where in the room will it be

delivered? These questions should be

considered in your next hypothesis.

Now it’s time to test your game, so go ahead and click on the green triangle () on the
menu bar to run the game normally.

DOES THE ACTION THAT YOU SEE AND THE CONTROL OF THE OBJECTS MEET YOUR
HYPOTHESIS STATEMENTS?

Lazarus should be able to move and jump under the control of the left and right arrow keys as he did in the
last test. Boxes should be dropping from the top of the room. Seemingly, the boxes always drop from above
Lazarus, which is plausible if you believe in gravity. If Lazarus moves left or right, a box will fall to his location,
forcing him to move again. You may recall creating an event with a variable that sets the location of these
boxes. The different types of boxes do not come in any particular pattern, but instead are delivered randomly.
But the player controlling Lazarus, will at least know what type of box is coming next because the controller
object is kind enough to display an instance of that box in the lower left hand corner of the room (0,440).
Don’t be too appreciative, because the controller object is what keeps the random boxes coming. As the
boxes fall, they either stack on top of each other, or some boxes crush other boxes due to their greater mass
(heavier boxes crush lighter boxes). As the boxes stack, Lazarus should be able to jump on them as long as
they are not stacked more than one box high. He can also climb them like stairs. The behavior of the falling,
stacking, and crushing of boxes, along with the way Lazarus looks as he moves, seems to make sense because
of the everyday physics being considered in the animations. Grapes moving, smiling, and jumping? Boxes
coincidentally falling wherever the grape goes? This is impossible. Yet, in video game animation it looks
plausible.

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 4 HYPOTHESIS STATEMENTS: Now it’s time to predict the behaviors box objects
based on the programming within the controller object.

 How many boxes will fall at any given time?

 Is there a specific order in which the boxes appear?

 What will the controller object do to inform the player of what happens next in the
gameplay?

 Where in the room will that information be shown, and what will the player see?

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 3 & 4 TEST AND EVALUATION: Write an evaluation of your hypothesis and

programming properties from STAGE 4.

 If you state “valid”, provide a detailed explanation of “why” the object behaves

properly based on your hypothesis, and the events and actions that you

programmed.

 If you state “invalid”, make sure that you expose your errors in reasoning, or your
errors in programming.

TUTORIAL CONTINUES ON NEXT PAGE

END OF STAGES 3 & 4. REVIEW YOUR WORK ON THE TUTORIAL GUIDE. STUDY THE
TUTORIAL GUIDE RIGOR SCALE. MAKE REVISIONS AND IMPROVEMENTS BASED ON THE
SCALE. UPLOAD COMPLETED TUTORIAL GUIDES TO EDMODO.

DO THIS ON YOUR TUTORIAL GUIDE

 STAGES 3 & 4 CONCEPT SUMMARY: Review the concepts found in the gold boxes throughout the

tutorial. Write a full paragraph describing how physics concepts are used in the behaviors of the box and

Lazarus objects. What are variables are used and what is their purpose? What is a controller object?

Use new vocabulary correctly in your writing.

