
Lazarus: Stages 5, 6, & 7
Of the game builds you have done so far, Lazarus has had the most programming properties. In the big

picture, the programming, animation, gameplay of Lazarus is relatively simple. Planning and organizing your

programming steps becomes more important as game properties become more numerous. You have seen

many examples of how events, actions, conditional actions, and blocks come together to create more complex

logic systems. Game developers, programmers, and other professionals in the field, rely on many processes

and steps in order to make ideas into working playable products. The process includes stages for concept

development and game development, like writing a concept document, storyboarding, asset development,

flowcharting, and prototyping. If there are technical problems in the programming, called bugs, then

programmers must troubleshoot (debug) the program. Once the game is prototyped, it can be tested by

people outside of the design process. We will study alpha and beta testing in a separate activity in the future.

Let’s recall the six step design process studied at the beginning of this course. All phases of concept and game

development for video games fit somewhere in that process, as you will see the six step flow map again these

stages. The story behind Lazarus, his behaviors, the physics, gameplay, and the animation all start with an

idea. As you put the finishing touches on Lazarus, you will read about the process of game development, and

see examples of just a few tasks and stages that happen in the course of game development. You will soon be

challenged to develop your own game. In that experience, you will get a taste of what it takes to design a

game. Start by adding the new vocabulary meanings to your tutorial guide.

 BE SURE TO COMPLETE HYPOTHESIS STATEMENTS FOR EACH STAGE.

 () DO NOT USE THE TEST BUTTON IN THIS ACTIVITY UNTIL THE END!
 OPEN YOUR FILE YOU SAVED AS initials_lazarus

 THERE ARE NO SAVE PROMPTS IN THIS TUTORIAL, SO SAVE REGULARLY.

STAGE 5:
More editing of the Lazarus object…….What makes him show fear?

1- Reopen the obj_laz_stand object and then reopen its Step event, so that you can see the existing
actions for this event.

2- Include the Check Collision conditional action (found in control tab) below the last action in the list.
Set X to 40 and Y to 0, and enable the Relative option.

3- Include another Check Collision action with X set to 40, Y set to -40, and the Relative option enabled.
This checks for a box diagonally to the right of Lazarus.

4- Include two more Check Collision actions: one with X set to -40 and Y set to 0, and the other with X set
to -40 and Y set to -40. Both should ha the Relative option enabled.
NOTE: These check for boxes to the left and diagonally up to the left.

5- Finally, include a Change Sprite action, using spr_laz_afraid.

Editing the standing Lazarus object to detect for being freed

Concept Development
The process of designing video and
computer games involves many
tasks. Popular games that are sold
to consumers involve hundreds of
people, each with specialized roles
that are required to make the idea,
or concept, into a final game. One
phase is concept development.
This includes many non-technical
tasks, such as brainstorming,
writing, storyboarding, and any
other tasks that allow the concept,
to be communicated, planned, and
prepared for the technical and
programming tasks. Two tasks of
high importance are the writing of
concept documents, and
storyboarding.

1- If you closed the form for obj_laz_stand, go ahead and reopen it. Select the Step event again to see
the existing actions for this event.

2- Note that this next action must be placed at the top of the list. Add a Change Sprite event and set it to
change into the spr_laz_stand. This action must be at the beginning of the list for this step event, so if
it is at the end of the list, move it by dragging and dropping it to the top of the list. It cannot be at
the bottom of the action list.

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 5 HYPOTHESIS STATEMENTS: Now it’s time to predict the behaviors of the Lazarus object and

behaviors of the boxes, based on the check collision actions.

 Describe the conditions that will cause the Lazarus object to change. What that change look

like?

 What do you think Lazarus will look like? How will this make the animation plausible?

Storyboarding
Another crucial task done in concept development is storyboarding. This
involves the drawing of different frames, each representing an event, action,
or level in the game. It allows the images to grow out of ideas into a two
dimensional drawing form. A storyboard shows the look of characters, back-
grounds, and game action so it can be communicated, changed, discussed,
and better understood. This is done by artists who work very closely with
the writers to insure that the nature of the original idea is not lost.

Concept Document
During concept development,
writers and producers will meet to
discuss, or brainstorm, ideas that
will affect the future of the game
project. Everything form the plot,
or storyline, characters, gameplay,
and what the game will look like,
must be carefully considered.
They will consider the target group
of people will be that might be
interested in buying the game. A
written report, called a concept
document, must be prepared. It
details an idea for a game that
might be developed. The concept
document might be used to
convince producers to commit
time and money into the develop-
ment the idea. A short concept
document sample is shown below.

 On the

STAGE 6:
Creating a new button object resource for the game

1- Create a new sprite called spr_button using Button.gif (it looks like a STOP button).
2- Create a new object called obj_button and assign it spr_button. Set Depth to 10.
3- Add a Collision event with the obj_laz_stand.
4- Drag and drop a Sleep action into the collision event from the main2 tab. Set Milliseconds to 1000

(1 second) and Redraw to true.
5- Add a conditional Check Next action (main1 tab).
6- Add a Next Room action (main1 tab). Select a transition effect if you wish.
7- Add an Else action followed by a Start Block action.
8- Add a Display Message action (main2 tab) and set Message to something like

“CONGRATULATIONS#You survirved!”. Do not use the quotation marks in the message.
9- Add a Different Room action and set New Room to the first room

(room_test, which is the only room at the moment). Select a transition.
10- Finish with an End Block action and close the object properties.

11- Open your test room and add a stop button at the top of the pit.
NOTE: You may adjust the location of this button later to make the game easier
or more challenging. You can create easier game play by lowering the button or
adding more buttons.

Game Development

Once the concept phase is over,

the technical side of game

design begins. In game

development, work that re-

quires programming, scripting,

and other technology skills is

completed to build a playable

game prototype. The concepts

and story must be created in

digital form. The art for

objects, background, and

animation must be created and

formatted. Music must be

written, and along with sound

effects, it must be recorded

and put into a digital format.

Building these graphic and

audio assets is called asset

development. The assets are

then applied later in the

prototyping of the game. You

will soon be challenged to

develop your own original

graphical and sound assets.

You can use software like

Audacity, Gimp, and Paint for

basic asset development.

Simple graphic and sound asset development can be done

on your computer using software like Paint or Audacity.

Creating a new starter object for the front end of the game
1- Create a new sprite called spr_title using Title.gif.
2- Create a new object called obj_starter and give it the title sprite.
3- Add a Create event and include a Sleep action in it. Set Milliseconds to 2000, for a wait of two seconds.
4- Include the Change Instance action and select the obj_controller. Close the object properties.
5- Edit your test room, and remove the controller object using the right mouse button and selecting

delete. Add the starter object at an appropriate place instead.

FALSE
TEST INSTANCE

COUNT FOR 0

 END BLOCK

LEVEL 2 GAMPLAY

LEVEL1 GAMPLAY

GO TO NEXT ROOM

SET SCORE TO 1000

WAIT 1 SECOND

START BLOCK

TRUE

More on Game Development: Making Flowcharts

Flowcharting is a process used by programmers to plan the sequence of programmed

events and actions. Think about the creation of the logic systems that you

programmed in your game builds. All of the cause and effect of events, conditional

actions, and actions must be carefully thought out, and then mapped on a graphic

organizer called a flowchart. A basic flowchart was used to illustrate a sequence of

programmed events and actions in Galactic Mail (shown again on left). In both of the

flowchart examples, the use of standard flowcharting symbols (see symbols) to show

how programmed procedures, sub-procedures (also called blocks or subroutines)

organizes the actions sequentially, so the game program can be prototyped using a

game engine or programming language.

1.

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 6 HYPOTHESIS STATEMENTS: Now it’s time to predict the behaviors of the button and

title objects.

 How will the game start at the front end?

 Is there a goal in the gameplay?

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.design-technology.org/CDT10flowchart.htm&ei=G11pVOy1H4apgwSLmYHABg&bvm=bv.79142246,d.eXY&psig=AFQjCNFcxAziBVzLEE2ZXjqNy0BwD1OfIA&ust=1416277473160633

STAGE 7:
Sounds, Backgrounds, and Help (No illustrations)

1- Create sounds for Music.mp3, Wall.wav, Crush.wav, Squished.wav, Move.wav, and Button.wav. Use
the usual naming conventions for sound resources (snd_music, snd_wall, etc.).

2- Open the obj_controller and create a Game Start by clicking Add Event and then clicking Other to find
it in the drop-down menu. Drag and drop a Play Sound action, select you Music sound, setting Loop
to true.

3- Open each of the falling box objects one at a time and perform the following:

 Select the collision action with the obj_wall, add a Play Sound and select snd_wall leaving Loop
as false.

 For each collision event with a box that it should crush, add a Play Sound and select snd_crush.
For example, since a falling stone object crushes every box but itself, add this action to the
collision event with all other boxes (except for the stone itself). A falling cardboard box won’t
crush anything, so it will not need any crush sounds with the collisions.

4- Open obj_laz_squished and add a Create event with a Play Sound action of snd_squished. This will
cover all squishing collisions.

5- In all four of the moving Lazarus object (left, right, jumping left, and jumping right), add Create events
with Play Sound actions of snd_move.

6- Open the obj_button, and add a Play Sound action of snd_button to the existing collision with
obj_laz_stand.

Adding a background to the room
1- Create a background using Background.bmp and give it a typical name following naming conventions.
2- Reopen the room, select the backgrounds tab, and add the background from the menu list (found

under the Foreground image property selector).

Finishing Touches
Decide how difficult you want your game to be? You can make it easier by lowering the button, adding
additional buttons, adding wall blocks configured as stairs, or all of these. You can make the game harder by
leaving one row of wall blocks along the bottom, left, and right sides of the room. In this configuration, you
would want the button to be as high as possible, close to either the right or left side of the room.

Game Information
Open Game Information in the resource list. Use the same basic scheme shown in the Galactic Mail tutorial,
including event keys and credits. The names for the game credits are the same.

Now it’s time to test your game, so go ahead and click on the green triangle () on the
menu bar to run the game normally.

DOES THE ACTION THAT YOU SEE AND THE CONTROL OF THE OBJECTS MEET YOUR
HYPOTHESIS STATEMENTS?

The basic gameplay of Lazarus is still as it was at the end of Stage 4, except now there is a goal for the player to achieve.
As the boxes (the ones that don’t get crushed) continue to pile up, Lazarus should be able to jump onto no more than
one box on the left or right. Due to the conditional actions you created for collision checks, when Lazarus is in between
two stacks of boxes, he will show a look of fear. The animation technique of anticipation is evident here, as it tells the
player that Lazarus is about to be crushed. And of course, the animation continues as Lazarus gets crushed. Although
all of this is somewhat exaggerated for effect, the behaviors of Lazarus reflect an emotional reaction that we can all
understand, making his ending plausible. The gameplay ends here with a little taunting in the message, including a
message encouraging the player to continue. The game will restart so the player can keep practicing to reach the goal of
pressing the button. If that happens, the player gets a congratulatory message to celebrate the success of reaching the
goal, and of course, Lazarus’ survival.

Additional challenges
Before experimenting any further, make sure you go to File and Save as and rename several copies of your
game build file (initials_lazarus1, initials_lazarus2, etc.). Use these files in case you make fatal errors and
need to restart. At least, you will always have your working copy of Lazarus. Then, with the new game build
files, try the following:

 Add additional rooms with harder gameplay. You can make copies of the existing room and make
changes to add difficulty, as explained near the end of the tutorial. You would need a Next Room
action to occur along with the collision of boxes and Lazarus, with a short pause in between levels.

 Editing the controller object to add cheats. These will help you navigate from room to room while
you are attempting these challenges. They can be removed when you are done if you don’t want
them in your final game.
1- Open the properties form for the controller object.
2- Add a Key Press, <N> event and include the Next Room action.
3- Add a Key Press, <P> event and include the Previous Room action.

DO THIS ON YOUR TUTORIAL GUIDE

STAGES 5, 6, & 7 TEST AND EVALUATION: Write an evaluation of your hypothesis and

programming properties from STAGE 4.

 If you state “valid”, provide a detailed explanation of “why” the object behaves

properly based on your hypothesis, and the events and actions that you

programmed.

 If you state “invalid”, make sure that you expose your errors in reasoning, or your
errors in programming.

DO THIS ON YOUR TUTORIAL GUIDE

STAGE 7 CONDITIONAL STATEMENTS: Write conditional IF/THEN statements for steps 2

through 6 in STAGE 7. For step 4, just choose any one the Lazarus objects.

TUTORIAL CONTINUES ON NEXT PAGE

END OF STAGES 5, 6, & 7. REVIEW YOUR WORK ON THE TUTORIAL GUIDE. STUDY THE
TUTORIAL GUIDE RIGOR SCALE. MAKE REVISIONS AND IMPROVEMENTS BASED ON THE
SCALE. UPLOAD COMPLETED TUTORIAL GUIDES TO EDMODO.

Game Development: The Prototyping of the Game
When you play a game in an arcade, on a game console in your home, or just sitting at your

computer, you are interacting with a product that was the result of a creative process. The final

phase of that process is the coding, or programming of the game to make a test version, called a

prototype. The coding, scripting, or programming can be done using programming languages like C,

C+, C# or Java. Sometimes game building engines, including advanced versions of Game Maker, or

Unity are used in prototyping. The result is a working game that can be played and tested. Although

it is not ready to be seen by the public, the prototype version of the game can be tested for gameplay

and playability. Problems, or errors, in the program can be detected during this process.

Programmers and game testers call these bugs. The problems are studied, and solutions to those

problems are created and applied to the correct the prototype. This process of searching out and

correcting errors is called troubleshooting, or debugging. Once it is decided that the prototype is

playable outside of the development process, testing can be done by people knowledgeable in

computer/video games. Testing in the game design industry includes a first test, called alpha testing.

This is usually by testers working for the game company. Further improvements, or changes to the

game can be made before people outside of the game company see it. It is then turned over to a

select group of people outside of the company in a second round of testing, called beta testing. The

beta testers will report back to the company, often through electronic surveys, email, and even

phone conversation. The information that they return to the company may be used to further

develop the game before the final version is packaged and sold.

As with some of the other concepts you studied in this unit, you will soon be required to develop an

original game. That game will be alpha and beta tested. Game testing vocabulary and concepts will

be covered deeper at that time.

DO THIS ON YOUR TUTORIAL GUIDE

 STAGES 5, 6 & 7 CONCEPT SUMMARY: Review the concepts found in the gold boxes throughout

the tutorial. Write a full paragraph describing the processes of concept development and game

development. Be sure to correctly use vocabulary from these stages in your writing.

