100 Day Countdown to the 4th Grade Math FSA (Days 1-50)
100 Day Countdown to the 4th Grade Math FSA

Table of Contents

<table>
<thead>
<tr>
<th>Instruction Order</th>
<th>Benchmarks Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days 1 – 5</td>
<td>MAFS.4.NBT.1.1 & MAFS.4.NBT.1.2</td>
</tr>
<tr>
<td>Days 6 – 10</td>
<td>MAFS.4.NBT.1.3 & MAFS.4.NBT.2.4</td>
</tr>
<tr>
<td>Days 11 – 15</td>
<td>MAFS.4.OA.1.1 & MAFS.4.OA.1.2</td>
</tr>
<tr>
<td>Days 16 – 20</td>
<td>MAFS.4.OA.1.3 & MAFS.4.OA.1.b</td>
</tr>
<tr>
<td>Days 21 – 25</td>
<td>MAFS.4.OA.2.4 & MAFS.4.OA.3.5</td>
</tr>
<tr>
<td>Days 26 – 30</td>
<td>MAFS.4.NBT.2.5 & MAFS.4.NBT.2.6</td>
</tr>
<tr>
<td>Days 31 – 35</td>
<td>MAFS.4.NF.1.1</td>
</tr>
<tr>
<td>Days 36 – 40</td>
<td>MAFS.4.NF.1.2</td>
</tr>
<tr>
<td>Days 41 – 45</td>
<td>MAFS.4.NF.2.3a–d</td>
</tr>
<tr>
<td>Days 46 – 50</td>
<td>MAFS.4.NF.2.4a–c</td>
</tr>
</tbody>
</table>
MAFS.4.NBT.1.1

1. An expression is shown.

800 ÷ 80

What is the value of the expression? _____________

MAFS.4.NBT.1.1

2. How many times larger is the value 250,000 than 250?

__
__
__
__

MAFS.4.NBT.1.2

4. Which phrase represents “253”?

A. Two hundred three
B. Two hundred fifty–three
C. Twenty–five and three
D. Two thousand and fifty–three

MAFS.4.NBT.1.1

3. How many times greater is the value of 3 in 300 than the value of the 3 in 30?

__
__
__
__

MAFS.4.NBT.1.2

5. Write 6 x 10,000 + 5 x 1,000 + 2 x 100 + 3 x 1 as a number.

__

Name: ______________________________________

Score: ___/5

Percentage: ____%
1. A grocery store has 330 cans of soda. If there are 10 cans of soda in a box how many boxes of soda does the grocery store have?

________________ boxes of soda

2. How many times larger is the value 25,000 than 250?

__
__
__

3. Billy Joe wrote the number 43,751 on his paper. Reginald wrote the number 39,412 on his paper. Which of the following statements are true? Mark all that apply.

A. The 4 in Billy Joe’s number is 100 times the value of the 4 in Reginald’s number.
B. The 3 in Reginald’s number is 100 times the value of the 3 in Billy Joe’s number.
C. The 1 in Billy Joe’s number is 1/10 the value of the 1 in Reginald’s number.

4. Match the name of each number with its numeric form.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>600,050</td>
<td>Six hundred</td>
</tr>
<tr>
<td>600,050</td>
<td>five thousand</td>
</tr>
<tr>
<td>605,000</td>
<td>Six hundred</td>
</tr>
<tr>
<td>650,000</td>
<td>thousand fifty</td>
</tr>
</tbody>
</table>

5. Select all the options with 54,625 written in expanded form.

○ 5 ten–thousands, 46 hundreds, 25 ones
○ 5 ten–thousands, 4 thousands, 62 hundreds, 5 ones
○ 50 thousands, 46 hundreds, 20 tens, 5 ones
○ 50 thousands, 40 hundreds, 60 tens, 25 ones
○ 54 thousands, 6 hundreds, 2 tens, 5 ones

Name: ________________________________
Score: ____/5
Percentage: ____%
1. A bank has 89,000 pennies that need to be rolled into coin wrappers. If it takes 100 pennies to fit into one coin wrapper then how many full coin wrappers does the bank have?

________________ coin wrappers

2. How many times greater is the value of 7 in 67,040 than the value of the 7 in 640,700?

__
__
__
__

3. Which statement correctly compares two numbers? Select all the correct statements.

○ 337 > 373
○ 337 < 373
○ 852 < 825
○ 825 > 825
○ 825 < 852

4. Match the name of each number with its numeric form.

<table>
<thead>
<tr>
<th></th>
<th>602,061</th>
<th>620,061</th>
<th>620,601</th>
<th>602,601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hundred</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>two</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thousand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sixty-one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Six hundred twenty thousand sixty-one

5. Select another way to show 51,293. Mark all that apply.

○ 50,000 + 1,000 + 200 + 90 + 3
○ 5 ten–thousands, 1 thousand, 29 hundreds, 3 ones
○ fifty–one thousand, two hundred ninety–three
○ 51,000 + 200 + 9 + 3
○ 51 thousands, 2 hundreds, 93 ones

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NBT.1.1

1. For A–D, select True or False for each statement.

A. The value of the 3 in 843,902 is 3,000. ○ True ○ False
B. The value of the 9 in 295,317 is 900,000. ○ True ○ False
C. The value of the 2 in 638,257 is 200. ○ True ○ False
D. The value of the 1 in 516,222 is 1,000. ○ True ○ False

MAFS.4.NBT.1.1

2. Billy Joe wrote the number 78,659 on his paper. Reginald wrote the number 96,357 on his paper. How many times greater is 6 in Reginald’s number than the 6 in Billy Joe’s number?

__
__
__

MAFS.4.NBT.1.2

4. Write nine hundred seventy three thousand, sixty-two as a number.

MAFS.4.NBT.1.2

5. Which phrase represents “34,823”?

A. three thousand, forty–eight hundred twenty–three
B. thirty four thousand, eight hundred three
C. thirty four thousand, eight hundred twenty–three
D. thirty four thousand, eight hundred twenty

Name: ______________________________________
Score: ____/5
Percentage: ____%
1. A grocery store has 460 cartons of milk. If there are 10 cartons of milk in a crate how many crates of milk does the grocery store have?

_________________ crates of milk

2. How many times greater is the value of 6 in 640,700 than the value of the 6 in 67,040?

__
__
__
__

3. Select a number for □ that will make a true comparison. Mark all that apply.

730,582 > □

A. 703,582
B. 730,852
C. 730,285
D. 703,528
E. 738,052
F. 730,592

4. Match the name of each number with its numeric form.

<table>
<thead>
<tr>
<th>900,005</th>
<th>900,050</th>
<th>905,000</th>
<th>950,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nine hundred five thousand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nine hundred thousand five</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Select another way to show 71,694. Mark all that apply.

○ 70,000 + 1,000 + 600 + 90 + 4
○ 7 ten-thousands, 1 thousand, 6 hundreds, 4 ones
○ seventy-one thousand, six hundred ninety-four
○ 71,000 + 600 + 90 + 4
○ 71 thousands, 6 hundreds, 9 tens, 4 ones

Name: ______________________________________
Score: ____/5
Percentage: ____%
100 Day Countdown to the 4th Grade Math FSA – Day 6

MAFS.4.NBT.1.3

1. Round 590,340 to the nearest hundred thousand. Write your answer below.

2. Complete the table to show how each old number was rounded to make the new number.

<table>
<thead>
<tr>
<th>Original</th>
<th>New</th>
<th>Nearest 100</th>
<th>Nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,545</td>
<td>3,500</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>14,675</td>
<td>15,000</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>16,789</td>
<td>16,800</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

MAFS.4.NBT.2.4

4. What is the sum of 42,436 and 21,352?

5. Enter the missing digit to complete the subtraction statement.

\[
\begin{array}{c}
4 0 9, 8 4 5 \\
- \underline{1 \square 6, 6 7 5} \\
2 1 3, 1 7 0
\end{array}
\]

The missing digit is ____________.

MAFS.4.NBT.1.3

3. Which numbers round to 4,100 when rounded to the nearest hundred?

A. 4,008
B. 4,140
C. 4,060
D. 4,109
E. 4,049

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NBT.1.3

1. Round 590,340 to the nearest ten thousand. Write your answer below.

MAFS.4.NBT.1.3

2. Original numbers are rounded to the nearest hundred and the nearest thousand. The original numbers are missing from the table.

<table>
<thead>
<tr>
<th>Original Number</th>
<th>Rounded to Nearest Hundred</th>
<th>Rounded to Nearest Thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,500</td>
<td>14,000</td>
<td></td>
</tr>
<tr>
<td>1,700</td>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>

Determine possible numbers that would correctly complete the table. Put your numbers in the appropriate box in the above table.

MAFS.4.NBT.1.3

3. Jessica is thinking of a number that rounds to 1,300 for the nearest ten and for the nearest hundred. What number might she be thinking of?

MAFS.4.NBT.2.4

4. Florida Atlantic and Central Florida are two large universities in Florida. Florida Atlantic has an enrollment of 30,808 students. Central Florida has an enrollment of 59,770 students. How many more students go to the University of Central Florida?

MAFS.4.NBT.2.4

5. Enter the missing digit to complete the addition statement.

\[
\begin{array}{c}
26,\underline{x}54 \\
18,899 \\
+12,351 \\
\hline
58,004
\end{array}
\]

The missing digit is ________________.

Name: ________________________________

Score: ___/5

Percentage: ___%
MAFS.4.NBT.1.3

1. The record for the current NCAA single-season home attendance record is 112,252 fans per football game at Michigan Stadium. What is 112,252 rounded to the nearest hundred?

MAFS.4.NBT.2.4

4. What is the difference of 482,245 and 2,386?

MAFS.4.NBT.1.3

2. In 2011, the average daily attendance for the Magic Kingdom at Disney World rounded to the nearest thousand was 47,000. Look at the numbers below. Select the numbers that could have been the exact daily attendance.

A. 46,849
B. 47,590
C. 46,402
D. 46,792
E. 46,500

MAFS.4.NBT.2.4

5. Wyoming has a population of 584,153. North Dakota has a population of 739,482. What is the combined population of these two states?

MAFS.4.NBT.2.4

3. An addition problem is shown. Calculate the sum.

63,829
24,343
+1,424

Name: ______________________________________
Score: ____/5
Percentage: ____%
MAFS.4.NBT.1.3

1. Which numbers round to 38,800 when rounded to the nearest hundred? Mark all that apply.

A. 38,850
B. 38,805
C. 37,990
D. 38,792
E. 38,750

MAFS.4.NBT.1.3

2. Complete the table to show how each old number was rounded to make the new number.

<table>
<thead>
<tr>
<th>Original</th>
<th>New</th>
<th>Nearest 100</th>
<th>Nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,545</td>
<td>6,500</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>19,378</td>
<td>19,000</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>19,557</td>
<td>20,000</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

MAFS.4.NBT.2.4

3. A subtraction problem is shown. Calculate the difference.

\[63,829 - 24,343 - 1,424 \]

For questions 4–5, use the table.

The table shows population data for Miami, Florida from the U.S. Census.

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>Population</th>
<th>Age in Years</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 5</td>
<td>21,222</td>
<td>20 to 34</td>
<td>77,287</td>
</tr>
<tr>
<td>5 to 9</td>
<td>21,962</td>
<td>35 to 44</td>
<td>55,682</td>
</tr>
<tr>
<td>10 to 14</td>
<td>22,182</td>
<td>45 to 59</td>
<td>62,270</td>
</tr>
<tr>
<td>15 to 19</td>
<td>22,339</td>
<td>60 and over</td>
<td>73,526</td>
</tr>
</tbody>
</table>

MAFS.4.NBT.2.4

4. How many children are under 10 years old?

MAFS.4.NBT.2.4

5. How many more people are between the ages of 35 to 44 than the people between the ages of 15 to 19?

Name: ____________________________________

Score: ____/5

Percentage: ____%
1. The record for the current NCAA single–season home attendance record is 112,252 fans per football game at Michigan Stadium. What is 112,252 rounded to the nearest ten thousand?

2. Original numbers are rounded to the nearest hundred and the nearest thousand. The original numbers are missing from the table.

<table>
<thead>
<tr>
<th>Original Number</th>
<th>Rounded to Nearest Hundred</th>
<th>Rounded to Nearest Thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>27,500</td>
<td>28,000</td>
<td></td>
</tr>
<tr>
<td>6,300</td>
<td>6,000</td>
<td></td>
</tr>
</tbody>
</table>

Determine possible numbers that would correctly complete the table. Put your numbers in the appropriate box in the above table.

3. Maritza is thinking of a number that rounds to 4,400 for the nearest ten and for the nearest hundred. What number might she be thinking of?

For question 4, use the table.

The table shows population data for Miami, Florida from the U.S. Census.

<table>
<thead>
<tr>
<th>Age in Years</th>
<th>Population</th>
<th>Age in Years</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 5</td>
<td>21,222</td>
<td>20 to 34</td>
<td>77,287</td>
</tr>
<tr>
<td>5 to 9</td>
<td>21,962</td>
<td>35 to 44</td>
<td>55,682</td>
</tr>
<tr>
<td>10 to 14</td>
<td>22,182</td>
<td>45 to 59</td>
<td>62,270</td>
</tr>
<tr>
<td>15 to 19</td>
<td>22,339</td>
<td>60 and over</td>
<td>73,526</td>
</tr>
</tbody>
</table>

4. How many more children are there between the ages of 10 to 19 are there than children under 10 years old?

5. Enter the missing digit to complete the addition statement.

\[\begin{array}{c}
3 \ 8 \ 9, \ 8 \ 4 \ 5 \\
1 \ \square \ 6, \ 9 \ 7 \ 3 \\
+ \ 2 \ 1 \ 7, \ 7 \ 7 \ 0 \\
\hline
7 \ 6 \ 4, \ 5 \ 8 \ 8
\end{array} \]

The missing digit is ________________.

Name: __________________________

Score: ____/5

Percentage: ____%
MAFS.4.OA.1.1

1. Select the statement that represents $35 = 5 \times 7$.

A. Pat collected 5 cars one year and 7 cars the next year.
B. Pat collected 5 cars each year for 7 years.
C. Pat had a collection of 35 cars and gave 7 of them away.
D. Pat had a collection of 5 cars and increased the number of cars by 35.

MAFS.4.OA.1.1

2. Pat has 8 times as many hats as John. John has 2 hats. Create a multiplication equation that represents the situation.

MAFS.4.OA.1.2

4. Johnny has 30 marbles. Mark has m marbles. If Johnny has 10 times as many marbles as Mark, write an equation that shows how many marbles Mark has.

MAFS.4.OA.1.1

3. Tad has 12 times as many model cars as Jimi. Jimi has 5 model cars. Select the expression that shows how many cars Tad has. Mark all that apply.

- 5×12
- $5 + 12$
- $12 + 5$
- $12(5)$
- $12(12 + 5)$

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.OA.1.1

1. Select the statement that represents 4 x 9 = 36.

A. Jordan collected 4 dimes one year and 9 dimes the next year.
B. Jordan collected 4 dimes each day for 9 years.
C. Jordan collected 9 dimes a day over a 4 day period.
D. Jordan had a collection of 4 dimes and increased the number of dimes by 36.

MAFS.4.OA.1.2

4. Joan has 45 marbles. Mary has \(m \) marbles. If Joan has 15 times as many marbles as Mary, write an equation that shows how many marbles Mary has.

\[15m = 45 \]

MAFS.4.OA.1.1

2. Mitt has 14 times as many books as Josh. Josh has 6 books. Create a multiplication equation that represents the situation.

3. Aaron has 9 times as many action figures as Victor. Victor has 7 action figures. Select the expression that shows how many figures Aaron has. Mark all that apply.

- \(9 + 9 + 9 + 9 + 9 + 9 \)
- \(7 + 9 \)
- \(7 \times 9 \)
- \(9 \times 7 \)
- \((3 \times 3) \times 7 \)

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.OA.1.1

1. Carl bought 7 packs of pencils. He now has 42 pencils. He writes that 42 is 6 times as many as 7. Which comparison sentence below can he use to show the comparison?

A. 7 more than 6 is 42.
B. 7 is 6 times as many as 42.
C. 42 is 7 times as many as 6.
D. 6 is 7 times as many as 42.

MAFS.4.OA.1.1

2. Fernando and Rich are both in an art class. Fernando has created 32 projects in class this year. Fernando has created four times as many projects as Rich. Create a multiplication equation that represents the situation. Then, solve how many projects Rich has created this year in art class?

_______________ art projects

MAFS.4.OA.1.1

3. Andy has 12 times as many video games as Todd. Todd has 8 video games. Select the expression that shows how many games Andy has. Mark all that apply.

○ 12 + 8
○ 12 + (4 x 2)
○ 12(8)
○ (3 + 5) x 12
○ (3 x 5) x 12

MAFS.4.OA.1.2

4. Joan has 100 marbles. Mary has m marbles. If Joan has 25 times as many marbles as Mary, write an equation that shows how many marbles Mary has.

MAFS.4.OA.1.2

5. Mrs. Pulido has 12 times as many soccer balls as bowling balls. The total number of soccer balls and bowling balls is 78. How many soccer balls does Mrs. Pulido have?

A. 12
B. 24
C. 36
D. 72

Name: ________________________________

Score: ____/5

Percentage: ____%
MAFS.4.OA.1.1

1. Which of the following equations represents the comparison sentence?

 27 is 3 times as many as 9

A. $3 + 9 = 27$
B. $3 \times 27 = 9$
C. $27 \times 9 = 3$
D. $27 = 3 \times 9$

MAFS.4.OA.1.1

2. Fernando and Rich are both in an art class. Fernando has created 40 projects in class this year. Fernando has created five times as many projects as Rich. Create a multiplication equation that represents the situation. Then, solve how many projects Rich has created this year in art class?

 __
 ______________________ art projects

MAFS.4.OA.1.1

3. JR has 4 times as many video games as Ken. Ken has 6 video games. Select the expression that shows how many games JR has. Mark all that apply.

 - $4(6)$
 - $(2 + 2) \times 6$
 - $(2 + 2) \times (4 + 2)$
 - 6×4
 - $4 + 4 + 4 + 4 + 4 + 4$

MAFS.4.OA.1.2

4. Chi Chi and Rory both like to play golf. They decided to see how far they can hit a golf ball. Chi Chi can hit the golf ball 72 yards. Rory can hit a golf ball 24 yards. How many times farther can Chi Chi hit a golf ball than Rory? Create an equation to solve the problem using a symbol for the unknown. Then solve the problem.

 __
 __

Chi Chi can hit the ball ____ time farther than Rory.

MAFS.4.OA.1.2

5. Mrs. Ulrich has 3 times as many pennies as nickels. The total number of pennies and nickels is 84. How many pennies does Mrs. Ulrich have?

A. 21
B. 42
C. 63
D. 73

Name: ________________________________

Score: ____/5

Percentage: ____%
1. Which of the following equations represents the comparison sentence?

56 is 7 times as many as 8

A. $56 = 7 + 8$
B. $56 = 7 \times 8$
C. $56 = 7 - 8$
D. $56 \times 7 = 8$

2. Cedric has 12 times as many boxes as Donatello. Donatello has 6 boxes. Create a multiplication equation that represents the situation.

3. JR has 14 times as many computer games as Ken. Ken has 7 computer games. Select the expression that shows how many games JR has. Mark all that apply.

- $14(7)$
- $(7 \times 1) \times 14$
- $(7 \times 1) \times (7 + 7)$
- $(7 \times 7) \times 7$
- $(7 + 1) \times (7 + 7)$

4. Johnny has 64 marbles. Mark has m marbles. If Johnny has 16 times as many marbles as Mark. How many marbles does Mark have? Create a multiplication equation that represents the situation, and then solve the equation.

5. Mrs. Federov has 9 times as many markers as colored pencils. The total number of markers and colored pencils is 110. How many colored pencils does Mrs. Federov have?

A. 9
B. 11
C. 22
D. 99

Name: ____________________________

Score: ____/5

Percentage: ____%
MAFS.4.OA.1.3

1. Jack bought 2 umbrellas, each costing $13. He bought 3 hats, each costing $4. How much did Jack spend in all?

$________________

MAFS.4.OA.1.3

2. Chad has $53, and each shirt costs $12. He writes the equation shown.

\[53 \div 12 = 4 \text{ R } 5\]

What does the number 5 represent in terms of Chad’s money?

__

__

__

__

MAFS.4.OA.1.3

3. Jenny bought 3 books and 4 bookmarks. The books cost $15 dollars each, and the bookmarks cost $5 each. Write an equation to show the total cost \(c \), in dollars, of the items Jenny bought.

__

MAFS.4.OA.1a

4. Which equation is false?

A. \(40 - 27 = 9 + 4 \)
B. \(44 - 22 = 32 - 10 \)
C. \(86 - 69 = 58 - 43 \)
D. \(93 - 35 = 24 + 34 \)

MAFS.4.OA.1b

5. Which statement is true about the equation \(42 - 6 = m + 9 \)?

A. The value of \(m \) is nine more than 42.
B. The value of \(m \) is nine less than 42.
C. The value of \(m \) is fifteen more than 42.
D. The value of \(m \) is fifteen less than 42.

Name: ______________________________________

Score: ____/5

Percentage: ____%
1. Jack bought 2 notebooks and 3 pencils for a total of $18.00. Each notebook costs the same amount. Each pencil costs the same amount. The price of a pencil is $4.00. What is the cost of 1 notebook?

$________________

2. Anthony wants to buy the same number of cookies for 3 of his friends. He has $57 dollars, and each cookie cost $5. What is the largest number of cookies that Anthony buys for each of his friends?

_________________ cookies

3. Shaquille bought 2 chairs and 3 chair cushions and spent between $30 and $50. Each chair costs the same amount. Each chair cushion costs the same amount. The price of a chair cushion is $4.00. What is the least amount Shaquille could have spent on a chair? What is the most Shaquille could have spent on a chair?

Least: ______________

Most: ______________

4. Which equation is true? Mark all that apply.

A. 42 + 14 = 38 + 18
B. 40 + 22 = 32 + 10
C. 67 + 33 = 70 + 30
D. 93 + 35 = 95 + 33

5. Which statement is true about the equation 22 – 2 = m – 7?

A. The value of m is five more than 22.
B. The value of m is five less than 22.
C. The value of m is two more than 22.
D. The value of m is two less than 22.

Name: ________________________________

Score: ____/5

Percentage: ____%
1. Missy bought 4 DVDs, each costing $13. She bought 5 CDs, each costing $6. How much did Missy spend in all?

\[
\text{\$ } ____________
\]

2. Chad has $35, and each flash drive costs $11. He writes the equation shown.

\[35 - 11 = 3 \text{ R } 2 \]

What does the number 2 represent in terms of Chad's money?

__
__
__
__

3. Anfernee bought 4 umbrellas and 2 hats and spent between $40 and $60. Each umbrella costs the same amount. Each hat costs the same amount. The price of a hat is $8.00. What is the least amount Anfernee could have spent on an umbrella? What is the most Anfernee could have spent on an umbrella?

Least: ____________

Most: ____________

4. Which equation is false? Mark all that apply.

A. \(42 + 11 = 38 + 20 \)
B. \(40 - 22 = 9 \times 2 \)
C. \(46 + 69 = 87 + 17 \)
D. \(63 + 15 = 65 - 13 \)

5. Justify the equation.

\[44 + 4 = m - 5 \]

Which statement proves the value of \(m \) is nine more than 44?

A. The value of \(m \) is nine more than 44, because when I add 44 + 4, then subtract 5, my value of \(m \) is 43. This makes my equation equivalent.
B. The value of \(m \) is nine more than 44, because when I add 44 + 4, then add 5, my value of \(m \) is 43. This makes my equation equivalent.
C. The value of \(m \) is nine more than 44, because when I add 44 + 4, then add 5, my value of \(m \) is 53. This makes my equation equivalent.
D. The value of \(m \) is nine more than 44, because when I add 44 + 4, then subtract 5, my value of \(m \) is 53. This makes my equation equivalent.
MAFS.4.OA.1.3

1. Sunny bought 3 umbrellas and 5 hats for a total of $27.00. Each umbrella costs the same amount. Each hat costs the same amount. The price of a hat is $3.00. What is the cost of 1 umbrella?

$________________

MAFS.4.OA.1.3

2. Anthony wants to buy the same number of whistles for 6 of his friends. He has $108 dollars, and each whistle cost $8. What is the largest number of whistles that Anthony buys for each of his friends?

__________________ whistles

MAFS.4.OA.1.3

3. Jenny bought 7 jackets and 10 winter hats. The jackets cost $8 dollars each, and the winter hats cost $4 each. Write an equation to show the total cost \(c\), in dollars, of the items Jenny bought.

MAFS.4.OA.1a

4. Garrett is looking at an equation on his math homework. He makes four statements about the question. Which statement by Garrett is correct?

\[44 + 38 = 59 + 23\]

A. The equation is false because the sum of 44 and 38 is not equivalent to the sum of 59 and 23.
B. The equation is true because the sum of 44 and 38 is not equivalent to the sum of 59 and 23.
C. The equation is false because the sum of 44 and 38 is equivalent to the sum of 59 and 23.
D. The equation is true because the sum of 44 and 38 is equivalent to the sum of 59 and 23.

MAFS.4.OA.1b

5. Which statement is true about the equation \(98 - 12 = m + 20\)?

A. The value of \(m\) is thirty-two more than 98.
B. The value of \(m\) is thirty-two less than 98.
C. The value of \(m\) is twelve more than 98.
D. The value of \(m\) is twelve less than 98.

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.OA.1.3

1. Missy bought 4 umbrellas and 7 hats for a total of $46.00. Each umbrella costs the same amount. Each hat costs the same amount. The price of an umbrella is $8.00. What is the cost of 1 hat?

$_____________

MAFS.4.OA.1.3

2. Vic wants to buy the same number of candy bars for 4 of his friends. He has $93 dollars, and each candy bar cost $7. What is the largest number of candy bars that Vic can buy for each of his friends?

_______________ candy bars

MAFS.4.OA.1.3

3. Anfernee bought 4 movie tickets and 5 drinks and spent between $80 and $100. Each movie ticket costs the same amount. Each drink costs the same amount. The price of a drink is $4.00. What is the least amount Anfernee could have spent on a movie ticket? What is the most Anfernee could have spent on a movie ticket?

Least: _______________

Most: _______________

MAFS.4.OA.1a

4. Which equation is true? Mark all that apply.

A. $8 \times 7 = 38 + 18$
B. $36 \div 4 = 42 - 33$
C. $35 + 24 = 94 - 35$
D. $83 - 35 = 8 \times 6$

MAFS.4.OA.1b

5. Harriet is comparing two equations in her math book. She makes four statements about the equations. Which statement by Harriet is true?

\[
\begin{align*}
41 + 3 &= m + 8 & 74 - 6 &= n - 3 \\
m &= 34 & n &= 71
\end{align*}
\]

A. The values of m and n are correct.
B. The values of m and n are incorrect.
C. The value of m is correct. The value of n is incorrect.
D. The value of m is incorrect. The value of n is correct.

Name: _________________________________

Score: ____/5

Percentage: ____%
1. What are the factors of 10?

2. What factors do 36 and 42 have in common? Mark all that apply.

A. 2
B. 3
C. 4
D. 6
E. 7
F. 18

3. Determine whether each number is prime or composite. Mark an X in the appropriate column for each number.

<table>
<thead>
<tr>
<th></th>
<th>Prime</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. The first number in a pattern follows the rule “Add 3.” What is the next number in the pattern?

5. A shape pattern is shown.

Describe how the number of total squares in each shape is related to the shape’s number.

__
__
__
__

Name: ______________________________________
Score: ____/5
Percentage: ____%
1. Select the multiples of 8 shown in the chart.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

2. What factors do 12 and 24 have in common? Mark all that apply.

A. 1
B. 2
C. 3
D. 6
E. 8
F. 9

3. What multiple of 8 is also a factor of 8?

4. The following numbers follow a pattern with a rule of \(\text{add 7} \). 33, 40, 47, 54, 61

Which of the following numbers would not fit in this pattern?

A. 75
B. 84
C. 96
D. 103

5. Jalen created a number pattern with the rule of \(\text{multiply by 3 and then subtract 2} \). Use the table below to complete a number pattern that follows those rules. Then explain how you completed the table.

<table>
<thead>
<tr>
<th>Numbers in the Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Name: _____________________________

Score: ____/5

Percentage: ____%
1. Sarah is arranging the chairs for a recital. She wants to put the 16 chairs into a rectangular array. Complete the table to show three ways that Sarah can arrange the chairs.

<table>
<thead>
<tr>
<th>Number of Rows</th>
<th>Number of Chairs in Each Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrangement 1</td>
<td></td>
</tr>
<tr>
<td>Arrangement 2</td>
<td></td>
</tr>
<tr>
<td>Arrangement 3</td>
<td></td>
</tr>
</tbody>
</table>

2. Look at the numbers below. Write each number under prime or composite.

<table>
<thead>
<tr>
<th>Prime</th>
<th>Composite</th>
</tr>
</thead>
</table>

3. For A–E, select True or False for each statement.
A. The number 54 is a multiple of 9. ○ True ○ False
B. The number 16 is a multiple of 2. ○ True ○ False
C. The number 48 is a multiple of 9. ○ True ○ False
D. The number 32 is a factor of 8. ○ True ○ False
E. The number 6 is a factor of 12. ○ True ○ False

4. Madison was finishing up her math homework, but was stuck on the last problem. She was looking at the number pattern below.

\[2, 3, 5, 9, 17\]

What is the next number in this pattern?

A. 34
B. 31
C. 32
D. 33
MAFS.4.OA.2.4

1. What are the factors of 32?

MAFS.4.OA.2.4

2. Donald has a coin collection. He has 36 dimes, 72 quarters, and 18 nickels. He wants to arrange them into equal groups with only one type of coin in each group. How many can he put in each group? Mark all that apply.

A. 1
B. 2
C. 3
D. 4
E. 9
F. 12

MAFS.4.OA.2.4

3. Write a number between 80 and 100 that has exactly 4 factors, one of which is 5.

MAFS.4.OA.3.5

4. Mrs. Mattingly wrote a row of numbers with a pattern on her white board.

11, 19, 16, 24, 21, 29, 26, …

What is the rule for the pattern?

A. subtract 8, add 3
B. add 5, subtract 3
C. add 8, subtract 3
D. subtract 3, add 8

MAFS.4.OA.3.5

5. Jalen wrote the number 23. His rule is add 6, which of the following numbers would be in Jalen’s pattern? Mark all that apply.

A. 29
B. 35
C. 36
D. 42
E. 59

Name: ______________________________________

Score: ____/ 5

Percentage: ____%
MAFS.4.OA.2.4

1. Paris is arranging the chairs for an awards ceremony. She wants to put the 36 chairs into a rectangular array. Complete the table to show five ways that Paris can arrange the chairs.

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>Number of Rows</th>
<th>Number of Chairs in Each Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAFS.4.OA.2.4

2. Look at the numbers below. Write each number under prime or composite.

2, 63, 67, 83, 91

<table>
<thead>
<tr>
<th>Prime</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAFS.4.OA.2.4

3. What factors do 28 and 40 have in common? Mark all that apply.

A. 1
B. 4
C. 5
D. 8
E. 14

MAFS.4.OA.3.5

4. Rochelle wrote a number pattern with the rule \(\text{add } 12 \).

357, 369, 381, 393, 405

Which statement about the pattern is true?

A. Every number in the pattern is odd because the initial number is odd and the rate of change is odd, therefore, the pattern numbers will always be odd.
B. Every number in the pattern is even because the initial number is even and the rate of change is even, therefore, the pattern numbers will always be even.
C. Every other number in the pattern is even because the initial number is even and the rate of change is even.
D. There is no pattern of odd or even numbers.

MAFS.4.OA.3.5

5. Use the rule to write the first five terms of the pattern.

Rule: Add 6 and then subtract 3
First number: 7

Name: ____________________________

Score: ____/5

Percentage: ____%
MAFS.4.NBT.2.5

1. Find the product of 220 and 4.

MAFS.4.NBT.2.5

2. Select all the expressions that have a product of 420.

- 35 x 12
- (3 x 5) x (2 x 10)
- (40 x 10) x (2 x 4)
- 40 x 20
- 14 x 30

MAFS.4.NBT.2.6

4. What is 400 divided by 5?

MAFS.4.NBT.2.5

3. Chester wanted to find the product of 3,840 and 5.
 He was going to use an area model to help find the product. Finish Chester’s incomplete area model below and find the product.

\[
\begin{array}{c}
3,000 \\
5 \\
15,000 \\
\end{array}
\]

Name: ______________________________________

Score: ____/5

Percentage: ____%

100 Day Countdown to the 4th Grade Math FSA – Day 26
1. Find the product of 2,830 and 3.

2. Mr. Dumars needs to order printer paper for his fourth grade class. He purchases 12 packs of printer paper. Each pack of printer paper has 48 pieces of paper. How many pieces of printer paper did Mr. Dumars order?

3. Which array can be used to find the product? Write the letter of the multiplication problem below the model that represents that equation.

 A. 6 x 3
 B. 8 x 4
 C. 4 x 6

 ■■■■
 ■■■■
 ■■■■
 ■■■■
 ■■■■
 ■■■■
 ■■■■

4. What is 402 divided by 8?

5. Mrs. Osgood assigned 848 assignments this past school year. If her students completed 6 assignments a day, how many days did it take her students to complete all the assignments?

 A. 141
 B. 142
 C. 5,088
 D. 842

Name: ______________________________

Score: ___/5

Percentage: ___%
MAFS.4.NBT.2.5

1. If Mrs. Daniels eats 14 crackers a day. How many crackers will she eat in 3 weeks?

________________ crackers

MAFS.4.NBT.2.5

2. Each fourth grade class at a local elementary answered 1,948 division problems last month. If there were a total of 6 classes, how many division problems did the 6 classes answer?

________________ division problems

MAFS.4.NBT.2.6

3. Select all the expressions that will have a remainder.

- 36 ÷ 4
- 34 ÷ 8
- 24 ÷ 7
- 54 ÷ 6
- 43 ÷ 3

MAFS.4.NBT.2.6

4. Select all the equations that could be represented by the following array.

A. 15 ÷ 3
B. 3 x 5
C. 5 ÷ 3
D. 15 ÷ 5
E. 15 x 5

MAFS.4.NBT.2.6

5. Frankie found the quotient of 676 divided by 4. To help him solve the problem he used the area model.

Now, help Frankie solve 944 divided by 8 using an area model.

Name: _____________________________

Score: ____/5

Percentage: ____%
MAFS.4.NBT.2.5

1. If Mrs. Wozniak runs 8 miles a day. How many miles will she run in 4 weeks?

________________ miles

MAFS.4.NBT.2.5

2. Each fourth grade class at a local elementary answered 1,209 multiplication fact problems last month. If there were a total of 4 classes, how many multiplication facts did the 4 classes answer?

________________ multiplication facts

MAFS.4.NBT.2.6

4. Look at the model. What division problem does it show?

____ ÷ _____ → _____ r _____

MAFS.4.NBT.2.6

5. Use an area model to solve 763 divided by 7.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Name: ______________________________________
Score: _____/5
Percentage: ____%

3. Donovan and Timothy solved two different division problems. Who solved the problem correctly?

Donovan

\[
\begin{array}{c|c|c}
5 & 128 \\
\hline
0 & 0 \\
-10 & -10 \\
\hline
28 & 28 \\
\hline
\end{array}
\]

Timothy

\[
\begin{array}{c|c|c}
6 & 139 \\
\hline
0 & 0 \\
-12 & -12 \\
\hline
19 & 19 \\
\hline
1 & 1 \\
\hline
\end{array}
\]

A. Donovan is correct.
B. Timothy is correct.
C. Both are correct.
D. Both are incorrect.
MAFS.4.NBT.2.5

1. Select all the expressions that have a product of 640.

○ 16×40
○ $(4 \times 4) \times (4 \times 10)$
○ $40 \div 16$
○ $(4 \times 4) \times (8 \times 6)$
○ $(2 \times 5) \times (8 \times 2) \times (2 \times 2)$

MAFS.4.NBT.2.5

2. Mr. Trammel needs to order construction paper for his fourth grade class. He purchases 22 packs of construction paper. Each pack of construction paper has 64 pieces of paper. How many pieces of construction paper did Mr. Trammel order?

________________ pieces of construction paper

MAFS.4.NBT.2.6

4. Look at the model. What division problem does it show?

______ \div ______ \Rightarrow ______ r ______

MAFS.4.NBT.2.6

5. Mrs. Lidstrom assigned 1,176 assignments this past school year. If her students completed 12 assignments a day, how many days did it take her students to complete all the assignments?

________________ days

MAFS.4.NBT.2.6

3. Select all the expressions that will have a remainder.

○ $49 \div 8$
○ $56 \div 9$
○ $17 \div 7$
○ $64 \div 8$
○ $74 \div 3$

Name: _________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.1.1

1. Kari modeled a fraction by shading parts of the circle as shown.

Shade the correct number of sections to model a fraction equivalent to Kari’s fractions.

MAFS.4.NF.1.1

2. Select all fractions that are equivalent to 2/3?
 - 6/9
 - 2/5
 - 4/6
 - 8/10
 - 3/2

MAFS.4.NF.1.1

3. Create two fractions that are equivalent to 2/3.

MAFS.4.NF.1.1

4. Reese modeled a fraction by shading parts of the circle as shown.

Select all the models that have been shaded to represent fractions to equivalent to Reese’s fractions.

MAFS.4.NF.1.1

5. Corey tried to find a fraction equivalent to 3/5. His work is shown.

\[
\frac{3}{5} = \frac{3}{5} \times \frac{1}{2} = \frac{3}{10}
\]

Which statement describes Corey’s error?

A. He incorrectly multiplied 3/5 by 1/2, instead of a fraction equal to one.
B. It is impossible to find a fraction equivalent to 3/5.
C. He should have divided by 1/2.
D. He incorrectly multiplied 3/10 by 1/2.

Name: _________________________________

Score: ____/5

Percentage: ____%
1. Elizabeth modeled a fraction by shading parts of the rectangle as shown.

Elizabeth’s Fraction Model

[Diagram of rectangle with shaded sections]

Shade the correct number of sections to model a fraction equivalent to Elizabeth’s fractions.

[Diagram of rectangle with possible sections shaded]

2. Which fraction is equivalent to 1/3?

A. 4/12
B. 3/12
C. 2/9
D. 2/4

3. Mindy and Jamie share chore responsibilities at home. They both vacuum around the house. Mindy vacuumed 2/12 of the house and Jamie vacuumed 2/6 of the house. List three equivalent fractions to the amount of house Jamie vacuumed.

Name: ________________________________

Score: ____/5

Percentage: ____%
100 Day Countdown to the 4th Grade Math FSA – Day 33

MAFS.4.NF.1.1

1. Megan modeled a fraction by shading parts of the circle as shown.

Megan’s Fraction Model

Shade the correct number of sections to model a fraction equivalent to Megan’s fractions.

MAFS.4.NF.1.1

2. Select all fractions that are equivalent to 3/8?

O 1/3
O 6/16
O 30/80
O 4/12
O 15/40

MAFS.4.NF.1.1

3. Which fractions are equivalent to 1/6?

A. 2/6, 3/6
B. 1/3, 1/12
C. 2/12, 3/18
D. 2/8, 3/18

MAFS.4.NF.1.1

4. For number 4, tell whether the fractions are equivalent by selecting the correct symbol.

\[
\begin{array}{ccc}
\frac{5}{7} & = & \frac{20}{28} \\
\frac{3}{6} & \neq & \frac{8}{12} \\
\frac{14}{16} & = & \frac{7}{8} \\
\frac{15}{25} & \neq & \frac{5}{15}
\end{array}
\]

MAFS.4.NF.1.1

5. Haley has two fraction models, each divided into equal-sized sections. The models are shaded to represent the same fraction.

Model A is divided into 8 sections, and 5 sections are shaded.

Model B is divided into 16 sections.

What do you know about the number of sections shaded in Model B? Explain your answer

__
__
__
__

Name: ______________________________________

Score: ____/5

Percentage: ____%
1. There are 24 students in Mrs. Callan’s class. There are 8 students in her class that take golf lessons after school. In simplest form, what fraction of Mrs. Callan’s class takes golf lessons?

\[
\text{students take golf lessons}
\]

2. Create three fractions that are equivalent to 9/15?

\[
\text{________________}
\]

3. Agnes modeled a fraction by shading parts of the circle as shown. Select all fractions that are equivalent to fraction Agnes has modeled.

A. \(\frac{3}{7}\)
B. \(\frac{4}{7}\)
C. \(\frac{5}{7}\)
D. \(\frac{1}{4}\)
E. \(\frac{8}{21}\)
F. \(\frac{12}{21}\)

4. For number 4, tell whether the fractions are equivalent by selecting the correct symbol.

\[
\frac{3}{7} \neq \frac{12}{28} \neq \frac{6}{9} \neq \frac{2}{6}
\]

\[
\frac{8}{12} \neq \frac{2}{3} \neq \frac{9}{25} \neq \frac{36}{100}
\]

5. Anders has two fraction models, each divided into equal-sized sections. The models are shaded to represent the same fraction.

Model A is divided into 12 sections, and 4 sections are shaded.

Model B is divided into 3 sections.

What do you know about the number of sections shaded in Model B? Explain your answer

--
--
--
--

Name: __________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.1.1

1. There are 21 students in Mrs. Callan’s class. There are 14 students in her class that got an A on the last spelling test. In simplest form, what fraction of Mrs. Callan’s class got an A on the last spelling test?

________________ students that got an A

MAFS.4.NF.1.1

2. Rhiannon modeled a fraction by shading parts of the circle as shown.

Rhiannon’s Fraction Model

Select the model that has been shaded to represent the fraction that is equivalent to Rhiannon’s fractions.

MAFS.4.NF.1.1

3. Sulley and Glenda share chore responsibilities at home. After dinner, they both wash dishes. Sulley washed $\frac{4}{12}$ of the dishes and Glenda washed $\frac{3}{8}$ of the dishes. Which fraction is equivalent to the amount of dishes Sulley washed?

A. 2/4
B. 1/3
C. 3/8
D. 1/4

MAFS.4.NF.1.1

4. Create three fractions that are equivalent to $\frac{12}{18}$.

MAFS.4.NF.1.1

5. Beverly has two fraction models, each divided into equal-sized sections. The models are shaded to represent the same fraction.

Model A is divided into 8 sections, and 6 sections are shaded.

Model B is divided into 4 sections.

What do you know about the number of sections shaded in Model B? Explain your answer

Name: ____________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.1.2

1. Select >, <, or = to complete a true statement about each pair of fractions.

\[\frac{3}{5} \bigcirc \frac{5}{12} \]
\[\frac{5}{6} \bigcirc \frac{3}{8} \]
\[\frac{1}{3} \bigcirc \frac{3}{5} \]

MAFS.4.NF.1.2

2. Dell bought \(\frac{2}{9} \) pound of Skittles and \(\frac{1}{3} \) pound of Twix to take as a snack to the movies. Use the numbers to compare the amount of candy Dell bought.

\[
\begin{array}{c|c}
1 & 3 \\
2 & 9 \\
\end{array}
\]

\[\bigcirc \]

\[\bigcirc \]

MAFS.4.NF.1.2

3. In class today, \(\frac{1}{4} \) of the students wore shorts and \(\frac{3}{12} \) of the students wore jeans. Which statement correctly compares the fractions?

A. \(\frac{1}{4} = \frac{3}{12} \)
B. \(\frac{1}{4} > \frac{3}{12} \)
C. \(\frac{3}{12} < \frac{1}{4} \)
D. \(\frac{1}{4} < \frac{3}{12} \)

MAFS.4.NF.1.2

4. Compare the pair of fractions below. Match the statements to the correct symbol. Each symbol may be used more than once or not at all.

\[
\begin{array}{c|c}
\frac{3}{4} & \bigcirc \frac{5}{8} \\
\frac{5}{8} & \bigcirc \frac{6}{9} \\
\frac{6}{9} & \bigcirc \frac{3}{4} \\
\end{array}
\]

MAFS.4.NF.1.2

5. Vern has his grandmother’s recipe for making trail–mix. Which of the following statements is true regarding different amounts in the recipe?

<table>
<thead>
<tr>
<th>Recipe for Trail–Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{4}) cup walnuts</td>
</tr>
<tr>
<td>(\frac{1}{2}) cup M&M’s</td>
</tr>
<tr>
<td>(\frac{2}{12}) cup pecans</td>
</tr>
<tr>
<td>(\frac{7}{8}) cup almonds</td>
</tr>
</tbody>
</table>

A. The amount of M&Ms is greater than the amount of walnuts.
B. The amount of almonds is greater than the amount of M&Ms.
C. The amount of walnuts is equal to the amount of pecans.
D. The amount of walnuts is less than the amount of pecans.

Name: ____________________________
Score: ____/5
Percentage: ____%
MAFS.4.NF.1.2

1. Select >, <, or = to complete a true statement about each pair of fractions.

\[
\begin{array}{ccc}
\frac{4}{5} & \bigcirc & \frac{11}{12} \\
\frac{6}{16} & \bigcirc & \frac{3}{8} \\
\frac{1}{3} & \bigcirc & \frac{2}{5}
\end{array}
\]

MAFS.4.NF.1.2

2. Maximillian bought \(\frac{2}{5}\) pound of Reese’s Pieces and \(\frac{1}{2}\) pound of Snickers to take as a snack to the movies. Use the numbers to compare the amount of candy Maximillian bought.

\[
\begin{array}{c|c}
\frac{1}{5} & \frac{2}{2} \\
\hline
\frac{1}{2} & \frac{2}{2}
\end{array}
\]

MAFS.4.NF.1.2

3. Taveres and Bud walked around Miller Lake. Taveres walked \(\frac{3}{10}\) of the distance in an hour. Bud walked \(\frac{4}{8}\) of the distance in an hour. Which statement correctly compares the fractions?

A. \(\frac{3}{10} > \frac{4}{8}\)
B. \(\frac{4}{8} = \frac{3}{10}\)
C. \(\frac{3}{10} < \frac{4}{8}\)
D. \(\frac{4}{8} < \frac{3}{10}\)

Name: ________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.1.2

1. Select >, <, or = to complete a true statement about each pair of fractions.

\[
\begin{align*}
\frac{4}{12} & \bigcirc \frac{4}{8} \\
\frac{15}{30} & \bigcirc \frac{3}{10} \\
\frac{4}{6} & \bigcirc \frac{2}{3}
\end{align*}
\]

MAFS.4.NF.1.2

2. Smith Elementary has a track around the school. Carl ran \(\frac{2}{7} \) of the way around the track before stopping to rest. Lewis ran \(\frac{3}{8} \) the way around the track before stopping to rest. Use the numbers to compare the amount Carl and Lewis ran around the track before stopping.

\[
\begin{array}{c|c}
8 & 3 \\
\hline
2 & 7
\end{array}
\]

MAFS.4.NF.1.2

3. Select all the statements that correctly compare the fractions.

A. \(\frac{2}{6} = \frac{2}{12} \)
B. \(\frac{4}{6} > \frac{7}{12} \)
C. \(\frac{2}{12} = \frac{1}{6} \)
D. \(\frac{2}{3} < \frac{6}{9} \)
E. \(\frac{1}{4} > \frac{2}{10} \)

MAFS.4.NF.1.2

4. Compare the pair of fractions below. Match the statements to the correct symbol. Each symbol may be used more than once or not at all.

\[
\begin{align*}
\frac{3}{7} & \bigcirc \frac{9}{21} \\
\frac{16}{24} & \bigcirc \frac{4}{6} \\
\frac{3}{9} & \bigcirc \frac{12}{27}
\end{align*}
\]

MAFS.4.NF.1.2

5. Ethan and Bryant ordered some pizza. Ethan eats \(\frac{4}{5} \) of a pizza. Bryant eats \(\frac{2}{3} \) of a pizza. Who ate more of the pizza? Which statement below is correct?

A. Bryant ate more. \(\frac{2}{3} > \frac{4}{5} \) because thirds are bigger than fifths.
B. They ate the same amount of pizza.
C. Ethan ate more. \(\frac{2}{3} < \frac{4}{5} \) because when you find the common denominator of 15, \(4/5 = 12/15 \), and \(2/5 = 10/15 \).
D. Bryant ate more. \(2/3 > 4/5 \) because fifths are bigger than thirds.

Name: ____________________
Score: ____/5
Percentage: ____%
MAFS.4.NF.1.2

1. Select >, <, or = to complete a true statement about each pair of fractions.

\[
\frac{3}{4} \bigcirc \frac{13}{12} \\
\frac{5}{9} \bigcirc \frac{10}{18} \\
\frac{6}{5} \bigcirc \frac{7}{5}
\]

MAFS.4.NF.1.2

2. Smith Elementary has a track around the school. Carl ran \(\frac{6}{8}\) of the way around the track before stopping to rest. Lewis ran \(\frac{4}{5}\) the way around the track before stopping to rest. Use the numbers to compare the amount Carl and Lewis ran around the track before stopping.

\[
\begin{array}{c|c}
8 & 6 \\
4 & 5 \\
\end{array}
\]

\[
\frac{8}{4} < \frac{6}{5}
\]

MAFS.4.NF.1.2

3. Select all the statements that correctly compare the fractions.

A. \(\frac{3}{6} > \frac{5}{12}\)
B. \(\frac{4}{6} < \frac{7}{12}\)
C. \(\frac{3}{24} < \frac{2}{12}\)
D. \(\frac{1}{3} < \frac{1}{2}\)
E. \(\frac{14}{18} > \frac{7}{9}\)

MAFS.4.NF.1.2

4. Patrick walks his dog around his neighborhood. He walked his dog for \(\frac{2}{5}\) of a mile on Monday. He walked his dog for \(\frac{1}{3}\) of a mile on Tuesday. Which statement is true?

A. \(\frac{2}{5} > \frac{1}{3}\)
B. \(\frac{2}{5} < \frac{1}{3}\)
B. \(\frac{1}{3} > \frac{2}{5}\)
D. \(\frac{1}{3} = \frac{2}{5}\)

MAFS.4.NF.1.2

5. Place the following fractions in the correct location on the number line: \(\frac{1}{2}, \frac{1}{8}, \frac{1}{3}\)

\[
\begin{array}{c|c|c}
0 & \frac{1}{2} \bigcirc \frac{1}{8} \bigcirc \frac{1}{3}
\end{array}
\]

Name: ____________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.1.2

1. Select $>$, $<$, or $=$ to complete a true statement about each pair of fractions.

$1/4 \bigcirc 4/12$

$2/5 \bigcirc 6/15$

$3/4 \bigcirc 4/3$

MAFS.4.NF.1.2

2. Jack and Howard ordered a sub. Jack eats $3/8$ of a sub. Howard eats $4/12$ of a sub. Who ate more of the sub? Which statement below is correct?

![Comparison symbols with numbers]
MAFS.4.NF.2.3a

1. An expression is shown.
 \[\frac{1}{6} + \frac{1}{6} \]
 What is the value of the expression?

MAFS.4.NF.2.3a

2. An expression is shown.
 \[\frac{9}{10} + \frac{4}{10} \]
 What is the value of the expression?

MAFS.4.NF.2.3a

3. Sue had \(\frac{7}{8} \) cup of flour. She used \(\frac{1}{8} \) of a cup.
 How much flour, in cups, does Sue have left?
 ________________ cups of flour left

MAFS.4.NF.2.3b

4. Which equations show different ways to express \(\frac{5}{8} \)?
 - \(\frac{2}{8} + \frac{3}{8} \)
 - \(\frac{6}{8} - \frac{1}{8} \)
 - \(\frac{7}{8} - \frac{4}{8} + \frac{3}{8} \)
 - \(\frac{1}{8} + \frac{3}{8} + \frac{1}{8} \)
 - \(\frac{7}{8} - \frac{2}{8} - \frac{1}{8} \)

MAFS.4.NF.2.3c

5. What is the sum of \(\frac{2}{3} \) and \(\frac{2}{3} \)?
 - What is the answer as a mixed number?

 - What is the answer as a fraction?

Name: ______________________________
Score: ____/5
Percentage: ____%
MAFS.4.NF.2.3a

1. An expression is shown.

\[\frac{7}{12} - \frac{2}{6} \]

What is the value of the expression?

MAFS.4.NF.2.3a

2. Use the fraction model to answer the question.

[Diagram of fraction model]

Write an equation that represents the shaded parts of the model?

MAFS.4.NF.2.3b

3. Which equations show different ways to express \(\frac{9}{12} \)?

- \(\frac{3}{12} + \frac{2}{12} + \frac{1}{12} + \frac{1}{12} \)
- \(\frac{4}{12} + \frac{2}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \)
- \(\frac{3}{12} + \frac{3}{12} + \frac{3}{12} \)
- \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} \)
- \(2 - \frac{1}{2} - \frac{2}{12} - \frac{1}{12} \)

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.2.3a

1. Select all the expressions that show the correct sum or difference.

A. \(\frac{2}{3} + \frac{1}{3} = \frac{1}{3} \)
B. \(\frac{4}{9} + \frac{3}{9} = \frac{7}{9} \)
C. \(\frac{9}{10} - \frac{3}{10} = \frac{6}{10} \)
D. \(\frac{3}{4} + \frac{2}{4} = \frac{5}{8} \)
E. \(\frac{10}{12} - \frac{8}{12} = \frac{2}{12} \)

MAFS.4.NF.2.3a

2. Use the fraction model to answer the question.

Write an equation that represents the shaded parts of the model and solve the equation?

MAFS.4.NF.2.3b

3. Pluto ate \(\frac{7}{8} \) of his waffle at breakfast this morning. Select the different ways to express \(\frac{7}{8} \) as a sum of fractions? Mark all that apply.

- \(\frac{3}{8} + \frac{4}{8} \)
- \(\frac{2}{8} + \frac{2}{8} + \frac{2}{8} + \frac{2}{8} \)
- \(\frac{2}{8} + \frac{2}{8} + \frac{3}{8} \)
- \(\frac{1}{8} + \frac{1}{8} + \frac{4}{8} \)
- \(\frac{3}{8} + \frac{1}{2} \)

MAFS.4.NF.2.3d

4. At lunch, Cristovao drank \(\frac{7}{8} \) ounces of orange juice. Selena drank \(\frac{1}{8} \) ounces of orange juice and Broderick drank \(\frac{5}{8} \) ounces of orange juice. How much orange juice did they drink all together?

\[\boxed{} \] ounces of orange juice

MAFS.4.NF.2.3c

5. What is the difference of \(\frac{3}{6} \) and \(\frac{5}{6} \)?

What is the answer as a mixed number?

\[\boxed{} \]

What is the answer as a fraction?

\[\boxed{} \]

Name: ______________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.2.3a

1. Select all the expressions that shows the correct sum or difference.

A. 2/3 + 1/3 = 3/6
B. 4/9 – 3/9 = 1/0
C. 9/15 – 4/15 = 5/15
D. 3/4 + 1/4 = 1
E. 6/12 + 1/12 = 7/12

MAFS.4.NF.2.3a

2. Use the fraction model to answer the question.

Which equation can represent the shaded parts of the model?

A. 10/12 – 4/12
B. 4/12 + 3/12
C. 1/12 + 8/12
D. 11/12 – 3/12

MAFS.4.NF.2.3b

3. Mickey ate 3/10 of his waffle at breakfast this morning. Write a different way to express 3/10 as a sum of fractions.

MAFS.4.NF.2.3d

4. Beth bought 5/6 pound of candy and her friend Starla bought 1/6 pound of candy. How much more candy did Beth buy than Starla?

A.

B.

C.

D.

MAFS.4.NF.2.3c

5. Select all the expressions that show the mixed number and fraction that have the same value.

A. \(\frac{3}{6} = \frac{45}{6}\)
B. \(2\frac{1}{2} = \frac{4}{2}\)
C. \(1\frac{2}{7} = \frac{9}{7}\)
D. \(\frac{8}{9} = \frac{72}{9}\)

Name: ________________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.2.3a

1. Select all the expressions that show the correct sum or difference.

A. \(\frac{3}{5} + \frac{1}{5} = \frac{4}{5} \)
B. \(\frac{4}{12} + \frac{3}{12} = \frac{7}{12} \)
C. \(\frac{9}{9} - \frac{2}{9} = \frac{7}{9} \)
D. \(\frac{8}{12} + \frac{2}{12} = \frac{10}{24} \)
E. \(\frac{5}{12} - \frac{2}{12} = \frac{2}{12} \)

MAFS.4.NF.2.3a

2. Use the fraction model to answer the question.

\[
\begin{array}{|c|c|c|}
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } \\
\hline
\end{array}
\]

Which equation can represent the shaded parts of the model?

A. \(\frac{1}{8} + \frac{1}{8} \)
B. \(\frac{2}{4} + \frac{1}{4} \)
C. \(\frac{7}{8} - \frac{3}{8} \)
D. \(\frac{2}{8} + \frac{1}{8} \)

MAFS.4.NF.2.3b

3. Minnie ate \(\frac{6}{9} \) of her banana at breakfast this morning. Select the different ways to express \(\frac{6}{9} \) as a sum of fractions? Mark all that apply.

- \(\frac{3}{9} + \frac{4}{9} \)
- \(\frac{2}{9} + \frac{2}{9} + \frac{2}{9} \)
- \(\frac{2}{9} + \frac{2}{9} + \frac{3}{9} \)
- \(\frac{1}{9} + \frac{1}{9} + \frac{4}{9} \)
- \(\frac{3}{9} + \frac{3}{9} \)

MAFS.4.NF.2.3d

4. After school, DeAndre rode his bike for \(\frac{3}{5} \) miles.

Jenny rode her bike for \(\frac{1}{5} \) miles and Sheena rode her bike for \(\frac{2}{5} \) miles. How much farther did Jenny and Sheena ride their bike combined than DeAndre?

\[\text{___________} \text{ miles} \]

MAFS.4.NF.2.3c

5. What is the difference of \(\frac{9}{8} \) and \(\frac{5}{8} \)?

What is the answer as a mixed number?

\[\text{___________} \]

What is the answer as a fraction?

\[\text{___________} \]

Name: ________________________________

Score: ____/5

Percentage: ____%
1. An equation is shown.

\[3 \times \square = \frac{3}{4} \]

What is the missing number? ______________

MAFS.4.NF.2.4b

2. An expression is shown.

\[\frac{2}{3} \times 5 \]

What is the value of the expression? ______________

MAFS.4.NF.2.4b

4. An expression is shown.

\[\frac{1}{4} \times 6 = \text{__________} \]

Use a fraction model to help solve the expression. Shade in the appropriate number of boxes in the model to show the product.

MAFS.4.NF.2.4c

5. Oscar and his brother walk to school every day. The trip to and from school is a total of \(\frac{4}{10} \) mile. How many miles do Oscar and his brother walk to school in one school week?

A. 1 Mile
B. 2 Miles
C. 3 Miles
D. 4 Miles

Name: ______________________________________

Score: ____/5

Percentage: ____%
100 Day Countdown to the 4th Grade Math FSA – Day 47

MAFS.4.NF.2.4b

1. An equation is shown.

 \[11 \times \square = \frac{55}{10} \]

 What is the missing number? ____________

MAFS.4.NF.2.4a

2. An expression is shown.

 \[\frac{2}{3} \times 5 \]

 What is the value of the expression? ____________

MAFS.4.NF.2.4c

3. Jasmin has a box of crayons. She lets each of her 3 friends borrow \(\frac{1}{5} \) of her box of crayons. How many crayons does she let her friends borrow?

 ____________ crayons

MAFS.4.NF.2.4b

4. An expression is shown.

 \[\frac{1}{3} \times 5 = \text{__________} \]

 Use a fraction model to help solve the expression. Shade in the appropriate number of boxes in the model to show the product.

MAFS.4.NF.2.4a

5. Select all the expressions that show a fraction that is a multiple of \(\frac{1}{7} \).

 A. \(\frac{2}{7} \)
 B. \(\frac{4}{7} \)
 C. \(\frac{7}{4} \)
 D. \(\frac{2}{6} \)
 E. \(\frac{7}{7} \)

 Name: ________________________________

 Score: ____/5

 Percentage: ____%
MAFS.4.NF.2.4a

1. An equation is shown.

\[\frac{1}{6} \times \square = \frac{7}{6} \]

What is the missing number? ______________

MAFS.4.NF.2.4b

2. Zachariah made potato salad. He used \(\frac{11}{8} \) cups of mayonnaise. He used 9 times as much potato. How many cups of potatoes did Zachariah use?

______________ cups

MAFS.4.NF.2.4c

3. Hayden has a box of markers. She lets her 3 friends each borrow \(\frac{1}{7} \) of her box of markers. How many of her markers does she let her friends borrow?

______________ crayons

MAFS.4.NF.2.4b

4. Select the expression that matches the model below.

A. \(4 \times \frac{2}{3} \)
B. \(\frac{3}{4} \times 4 \)
C. \(4 \times \frac{2}{5} \)
D. \(\frac{3}{9} \times 4 \)

MAFS.4.NF.2.4b

5. Select the expression that matches the model below.

A. \(\frac{3}{4} \times \frac{2}{5} \)
B. \(\frac{2}{5} \times \frac{1}{2} \)
C. \(\frac{6}{10} \times \frac{2}{4} \)
D. \(\frac{4}{3} \times \frac{5}{2} \)

Name: ______________________________________

Score: ____/5

Percentage: ____%
1. An equation is shown.

\[8 \times \square = \frac{32}{5} \]

What is the missing number? ______________

MAFS.4.NF.2.4b

2. An expression is shown.

\[\frac{1}{4} \times 5 \]

What is the value of the expression? ______________

MAFS.4.NF.2.4a

3. Jolene has a bag of toys. She lets her 5 friends each borrow \(\frac{1}{8} \) of her bag of toys. How many of her toys does she let her friends borrow?

______________ crayons

MAFS.4.NF.2.4c

4. Select all the expressions that show the correct product.

A. \(4 \times \frac{6}{8} = \frac{24}{8} \)
B. \(4 \times \frac{1}{4} = \frac{5}{4} \)
C. \(9 \times \frac{3}{8} = \frac{75}{8} \)
D. \(2 \times \frac{5}{10} = \frac{10}{10} \)
E. \(1 \times \frac{4}{6} = \frac{4}{6} \)

MAFS.4.NF.2.4b

5. Select all the expressions that show a fraction that is a multiple of \(\frac{1}{9} \).

A. \(\frac{2}{9} \)
B. \(\frac{4}{9} \)
C. \(\frac{9}{4} \)
D. \(\frac{9}{1} \)
E. \(\frac{7}{9} \)

MAFS.4.NF.2.4a

Name: ______________________________

Score: ____/5

Percentage: ____%
MAFS.4.NF.2.4b

1. An equation is shown.

 \[2 \times \square = \frac{6}{6} \]

 What is the missing number? __________

MAFS.4.NF.2.4b

2. An expression is shown.

 \[\frac{7}{8} \times 6 \]

 What is the value of the expression? __________

MAFS.4.NF.2.4c

3. If each person at a party will eat \(\frac{3}{8} \) of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

 __________ pounds of roast beef

 The pounds of roast beef needed are between ______ and ______ pounds.

MAFS.4.NF.2.4b

4. Select all the expressions that show the correct product.

 A. \(3 \times \frac{6}{5} = \frac{18}{5} \)
 B. \(4 \times \frac{2}{8} = \frac{8}{8} \)
 C. \(9 \times \frac{1}{7} = \frac{9}{7} \)
 D. \(25 \times \frac{5}{10} = \frac{125}{10} \)
 E. \(6 \times \frac{7}{100} = \frac{13}{100} \)

MAFS.4.NF.2.4b

5. An expression is shown.

 \[\frac{2}{5} \times 7 = __________ \]

 Use a fraction model to help solve the expression. Shade in the appropriate number of boxes in the model to show the product.

 Name: ______________________________________

 Score: ___/5

 Percentage: ___%
100 Day Countdown to the 4th Grade Math FSA Answer Key

Day 1

1. 10
2. Possible explanation: 250,000 is 1,000 times larger than 250 because I can multiply 250 by 1,000 to get 250,000.
3. The value of the 3 in 300 is 10 times larger than the 3 in 30.
4. B
5. 65,203

Day 2

1. 33 boxes of soda
2. Possible explanation: 25,000 is 100 times larger than 250 because I can multiply 250 by 100 to get 25,000.
3. A; C

Day 3

1. 890 full coin wrappers
2. The value of the 7 in 67,040 is 10 times larger than the 7 in 640,700.
3. 337 < 373
 825 < 852
4.
5. 50,000 + 1,000 + 200 + 90 + 3
 fifty–one thousand, two hundred ninety–three
 51 thousands, 2 hundreds, 93 ones

Day 4

1. A: True, B: False, C: True, D: False
2. Possible explanation: The 6 in Reginald’s number is 10 times greater than the 6 in Billy Joe’s number.
3. 295 > 259
 259 < 295
4. 973,062
5. C. thirty four thousand, eight hundred twenty–three
100 Day Countdown to the 4th Grade Math FSA Answer Key

Day 5

1. 46 crates of milk
2. The value of the 6 in 640,700 is 10 times larger than the 6 in 67,040.
3. A; C; D
4.
5. 〇 70,000 + 1,000 + 600 + 90 + 4
 〇 seventy-one thousand, six hundred ninety-four
 〇 71,000 + 600 + 90 + 4
 〇 71 thousands, 6 hundreds, 9 tens, 4 ones

Day 6

1. 600,000
2.
3. B; C; D
4. 63,788
5. The missing digit is 9.

Day 7

1. 590,000
2.
3. 1,295 –1,304
4. 28,962
5. The missing digit is 7.
Day 11
1. B
2. Possible answers: \(8 \times 2 = 16\) or \(2 \times 8 = 16\)
3.
 - \(\bigcirc\) \(5 \times 12\)
 - \(\bigcirc\) \((2 + 2) \times 6\)
4. \(10 \times m = 30\)
5. 12

Day 12
1. C
2. Possible answers: \(14 \times 6 = 84\) or \(6 \times 14 = 84\)
3.
 - \(\bigcirc\) \(9 + 9 + 9 + 9 + 9 + 9\)
 - \(\bigcirc\) \(7 \times 9\)
 - \(\bigcirc\) \(9 \times 7\)
 - \(\bigcirc\) \((3 \times 3) \times 7\)
4. \(15 \times m = 45\)
5. 45

Day 13
1. C
2. \(4 \times p = 32\) or \(4 \times 8 = 32\) or \(32 \div 4 = 8\);
 8 art projects
3.
 - \(\bigcirc\) \(12(8)\)
 - \(\bigcirc\) \((3 + 5) \times 12\)
4. \(25 \times m = 100\)
5. 72

Day 14
1. D
2. \(5 \times p = 40\) or \(5 \times 8 = 40\); 8 art projects
3.
 - \(\bigcirc\) \(4(6)\)
 - \(\bigcirc\) \((2 + 2) \times 6\)
 - \(\bigcirc\) \((2 + 2) \times (4 + 2)\)
 - \(\bigcirc\) \(6 \times 4\)
 - \(\bigcirc\) \(4 + 4 + 4 + 4 + 4 + 4\)
4. \(24 \times ? = 72\) or \(24 \times 3 = 72\); 3 times farther
5. C

Day 15
1. B
2. Possible answers: \(12 \times 6 = 72\) or \(6 \times 12 = 72\)
3.
 - \(\bigcirc\) \(14(7)\)
 - \(\bigcirc\) \((7 \times 1) \times 14\)
 - \(\bigcirc\) \((7 \times 1) \times (7 + 7)\)
4. \(16 \times m = 64\); 4 marbles
5. B

Day 16
1. $38
2. The number 5 represents the amount or number of dollars that Chad has left over after buying 4 shirts.
3. Possible Answer: \(3 \times \$15\) + \(4 \times \$5\) = \(c\)
4. C
5. D
100 Day Countdown to the 4th Grade Math FSA Answer Key

Day 17

1. $3
2. 3 cookies
3. Least = $9 per chair
 Most = $19 per chair
4. A; C; D
5. A

Day 18

1. $82
2. The number 2 represents the amount or number of dollars that Chad has left over after buying 3 flash drives.
3. Least = $6 per umbrella
 Most = $11 per umbrella
4. A; C; D
5. C

Day 19

1. $4
2. 2 whistles
3. Possible Answer: \((7 \times 8) + (10 \times 4) = c\)
4. D
5. B

Day 20

1. $2
2. 3 candy bars
3. Least = $15 per movie ticket
 Most = $20 per movie ticket
4. A; B; C; D
5. D

Day 21

1. 1, 2, 5, 10
2. A; B; D

<table>
<thead>
<tr>
<th></th>
<th>Prime</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>X</td>
</tr>
</tbody>
</table>

3. 8
4. 8
5. Possible answer: In each new shape a new row is added. In each new row, the number increases by 1 from the previous row. The pattern is “Add 1” to each new row.

Day 22

1.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. A; B; C; D
3. 8
4. B
5. First, I picked a number to start with. Then, I multiplied that number by 3 and subtracted it by 2. I did the same thing for the next number.
Check student work in their charts.
100 Day Countdown to the 4th Grade Math FSA Answer Key

Day 23

<table>
<thead>
<tr>
<th>Number of Rows</th>
<th>Number of Chairs in Each Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrangement 1</td>
<td>16</td>
</tr>
<tr>
<td>Arrangement 2</td>
<td>4</td>
</tr>
<tr>
<td>Arrangement 3</td>
<td>2</td>
</tr>
</tbody>
</table>

1. The numbers in number of rows and number of chairs in each row may be flipped.

2. The numbers in number of rows and number of chairs in each row may be flipped.

Day 24

1. 32: 1, 2, 4, 8, 16, 32
2. A; B; C; E
3. 85
4. C
5. A; B; E

Day 25

<table>
<thead>
<tr>
<th>Number of Rows</th>
<th>Number of Chairs in Each Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrangement 1</td>
<td>16</td>
</tr>
<tr>
<td>Arrangement 2</td>
<td>18</td>
</tr>
<tr>
<td>Arrangement 3</td>
<td>12</td>
</tr>
<tr>
<td>Arrangement 4</td>
<td>2</td>
</tr>
<tr>
<td>Arrangement 5</td>
<td>4</td>
</tr>
</tbody>
</table>

1. The numbers in number of rows and number of chairs in each row may be flipped.

2. A; B
3. 7, 10, 13, 16, 19

Day 26

1. 880
2. ○ 35 x 12
 ○ 14 x 30
3. 57, 67, 83
4. A
5. 50; 2

Day 27

1. 8,490
2. 576
3. C, B, A
4. 50 r 2
5. B, 142
Day 28

1. 294 crackers
2. 11,688
3. ○ 34 ÷ 8
 ○ 24 ÷ 7
 ○ 43 ÷ 3
4. A; B; D

Day 29

1. 224 miles
2. 4,836
3. C
4. 22 ÷ 6 → 3 r 4

Day 30

1. ○ 16 x 40
 ○ (4 x 4) x (4 x 10)
 ○ (2 x 5) x (8 x 2) x (2 x 2)
2. 1,408
3. ○ 49 ÷ 8
 ○ 17 ÷ 7
 ○ 74 ÷ 3
4. 31 ÷ 9 → 3 r 4
5. 98 days

Day 31

1. ○ 6/9
 ○ 4/6
2. ○ 6/9
3. Possible answers: 4/6, 6/9, 8/12

Day 32

1. ○ A
2. A
3. Possible Answers: 1/3, 3/9, 4/12

©R. Carlson
Day 33

1.

2. ☐ 6/16
 ☐ 30/80
 ☐ 15/40

3. C

4.

5. The number of sections shaded are going to be double that of the original model because the number of sections doubled in model b. So, I shaded in 10 sections.

Day 34

1. 1/3 students take golf lessons
2. Possible answers: 3/5, 18/30, 27/45, 90/150, 900/1500
3. B; F

4.

5. The number of sections shaded are going to be smaller than the original model. I found the simplest form on 4/12=1/3. So, there will be three sections with one section shaded in.

Day 35

1. 2/3 students that got an A

2.

3. B

4. Possible Answers: 2/3, 6/9, 8/12, 10/15

5. The number of sections shaded are smaller than the original model. There are half the sections in model a, than model b. So, three sections will be shaded in.

Day 36

1. 3/5 > 5/12; 5/6 > 3/8; 1/3 < 3/5
2. 2/9 < 1/3
3. A

4.

5. B

Day 37

1. 4/5 <11/12; 6/16 = 3/8; 1/3 < 2/5
2. 2/5 < 1/2
3. C

4.

5. D
Day 38

1. $\frac{4}{12} < \frac{4}{8}; \frac{15}{30} > \frac{3}{10}; \frac{4}{6} = \frac{2}{3}$
2. $\frac{2}{7} < \frac{3}{8}$
3. B; C; E
4. \[\frac{5}{7} < \frac{9}{21} \]
 \[\frac{16}{24} > \frac{4}{6} \]
5. C

Day 39

1. $\frac{3}{4} < \frac{13}{12}; \frac{5}{9} = \frac{10}{18}; \frac{6}{5} < \frac{7}{5}$
2. $\frac{6}{8} < \frac{4}{5}$
3. A; C; D
4. A
5. \[\frac{1}{3} \quad 1/2 \]

Day 40

1. $\frac{1}{4} < \frac{4}{12}; \frac{2}{5} = \frac{6}{15}; \frac{3}{4} < \frac{4}{3}$
2. $\frac{4}{12} < \frac{3}{8}$
3. C; D; E
4. A
5. \[\frac{1}{5} \quad \frac{2}{4} \quad \frac{2}{3} \quad \frac{3}{4} \]

Day 41

1. $\frac{2}{6} \text{ or } \frac{1}{3}$
2. $\frac{13}{10} \text{ or } 1 \frac{3}{10}$
3. $\frac{6}{8} \text{ or } \frac{3}{4} \text{ cups of flour left}$
4. \[\bigcirc \frac{2}{8} + \frac{3}{8} \]
 \[\bigcirc \frac{6}{8} - \frac{1}{8} \]
 \[\bigcirc \frac{1}{8} + \frac{3}{8} + \frac{1}{8} \]
5. Mixed Number: $4\frac{1}{3}$; Fraction: $\frac{13}{3}$

Day 42

1. $\frac{3}{12} \text{ or } 1 \frac{1}{4}$
2. $\frac{5}{6}$
3. \[\bigcirc \frac{4}{12} + \frac{2}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \]
 \[\bigcirc \frac{3}{12} + \frac{3}{12} + \frac{3}{12} \]
 \[\bigcirc \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \]
 \[\bigcirc 2 - 1 - \frac{2}{12} - \frac{1}{12} \]
4. $7 \frac{2}{4} \text{ or } 7 \frac{1}{2} \text{ ounces of orange juice}$
5. Mixed Number: $6\frac{5}{6}$; Fraction: $\frac{41}{6}$

Day 43

1. B; C; E
2. $\frac{11}{20} - \frac{6}{20} = \frac{5}{20} \text{ or } 1 \frac{1}{4}$
3. \[\bigcirc \frac{3}{8} + \frac{4}{8} \]
 \[\bigcirc \frac{2}{8} + \frac{2}{8} + \frac{3}{8} \]
 \[\bigcirc \frac{3}{8} + \frac{1}{2} \]
4. $16 \frac{7}{8} \text{ ounces of water}$
5. Mixed Number: $3\frac{4}{6}$ or $3\frac{2}{3}$; Fraction: $\frac{22}{6} \text{ or } 11/3$
100 Day Countdown to the 4th Grade Math FSA Answer Key

Day 44

1. C; D; E
2. D
3. Possible Answers: $\frac{1}{10} + \frac{1}{10} + \frac{1}{10}$ or $\frac{2}{10} + \frac{1}{10}$
4. B
5. A; C

Day 45

1. A; B; C
2. D
3.
 - $\frac{2}{9} + \frac{2}{9} + \frac{2}{9}$
 - $\frac{1}{9} + \frac{1}{9} + \frac{4}{9}$
 - $\frac{3}{9} + \frac{3}{9}$
4. 4 miles
5. Mixed Number: $1\frac{5}{8}$; Fraction: $\frac{13}{8}$

Day 46

1. $\frac{1}{4}$
2. $\frac{10}{3}$
3. $\frac{39}{4}$
4.
5. B

Day 47

1. $\frac{5}{10}$
2. $\frac{25}{3}$
3. $\frac{3}{5}$ crayons
4.
5. A; B; E

Day 48

1. $\frac{7}{1}$
2. $10 \frac{1}{8}$
3. $\frac{3}{7}$ crayons
4. A
5. A
Day 49

1. 4/5
2. 5/4
3. 5/8 crayons
4. A; D; E
5. A; B; E

Day 50

1. 3/6
2. 42/8
3. 15/8 or 1 7/8 pounds of roast beef;
The pounds of roast beef needed are between 1 and 2 pounds.
4. A; B; C; D
5. 14/5;

Thank you for purchasing my 100 Day Countdown packet. I hope this helps your students in a small way in preparing for the FSA. This product is intended for a single license use only. Please do not redistribute without permission or the purchase of multiple licenses. This product may not be redistributed in any form.