Bellwork

1. Use your calculator to find tan 30° to two decimal places.

0.58

2. Solve $tan 54^{\circ} = \frac{2500}{x}$. Round to two decimal places.

1816.36

5.2 Right Triangle Trigonometry

Learning Goal: The student will be able to use right triangle trigonometry to solve applied problems

An <u>angle of elevation</u> (look up) is the angle formed by a horizontal line and a line of sight to a point *above* the line.

An <u>angle of depression</u> (look down) is the angle formed by a horizontal line and a line of sight to a point *below* the line.

Since horizontal lines are parallel, $\angle 1 \cong \angle 2$ by the Alternate Interior Angles Theorem. Therefore the angle of elevation from one point is congruent to the angle of depression from the other point.

Example 1: Classifying Angles of Elevation and Depression

Classify each angle as an angle of elevation or an angle of depression.

 $\angle 2$ It is an angle of Elevation.

 \angle 3 It is an angle of Depression.

 $\angle 1$ It is an angle of Depression.

Check It Out! Example 2

Use the diagram to classify each angle as an angle of elevation or angle of depression.

- $\angle 3$ It is an angle of depression.
- $\angle 4$ It is an angle of elevation.
- $\angle 5$ It is an angle of depression.
- ∠6 It is an angle of elevation.

Example 3: Finding Distance by Using Angle of Elevation

A surveyor stands 200 ft from a building to measure its height with a 5-ft tall theodolite. The angle of elevation to the top of the building is 35°. How tall is the building?

- 1) Draw a diagram to represent the situation.
- 2) Use a trigonometric function, and solve for x: Tangent = opposite side / adjacent side $\tan 35 = x / 200$: (multiply both sides by 200) $200 \tan 35 = x$

Top of

200 TAN 35 ENTER 140.041508 Use a calculator.

So $x \approx 140$.

3) To find the height of the building, add the height of the Theodolite, which is 5 ft tall.

Final Answer: The building is about 140 ft + 5 ft, or **145 ft tall**.

Example 4: Finding Distance by Using Angle of Depression

An airplane pilot sights a life raft at a 26 degree angle of depression. The airplane's altitude is 3 km. What is the airplane's surface distance d from the raft?

$$\tan 26 = \frac{3}{d}$$

d

Example 5: Finding the Angle of Depression

 An airplane is flying at a height of 2 miles above the ground. The distance along the ground from the airplane to the airport is 5 miles. What is the angle of depression from the airplane to the airport?

Lesson Practice: Part I

- 1. A plane is flying at an altitude of 14,500 ft. The angle of depression from the plane to a control tower is 15°. What is the horizontal distance from the plane to the tower? Round to the nearest foot. 54,115 ft
- **2.** A woman is standing 12 ft from a sculpture. The angle of elevation from her eye to the top of the sculpture is 30°, and the angle of depression to its base is 22°. How tall is the sculpture to the nearest foot?

 12 ft
- 3. Calculate the angle of elevation of the line of sight of a person whose eye is 1.7 m above the ground, and is looking at the top of a tree which is 27.5 m away on level ground and 18.6 m high.

Angle of elevation of this person line of sight is 31.57°

Lesson Practice: Part II

Classify each angle as an angle of elevation or angle of depression.

4. ∠6 **6.** ∠7

5. ∠9 **7.** ∠8

Lesson Practice: Answers

- 1. 54,115 ft
- 2. 12 ft
- 3. Angle of elevation of this person line of sight is 31.57°
- 4. angle of depression
- 5. angle of elevation
- 6. angle of elevation
- 7. angle of depression